算法沉淀——贪心算法五(leetcode真题剖析)

这篇具有很好参考价值的文章主要介绍了算法沉淀——贪心算法五(leetcode真题剖析)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

算法沉淀——贪心算法五(leetcode真题剖析),算法沉淀,算法,贪心算法,leetcode

01.跳跃游戏 II

题目链接:https://leetcode.cn/problems/jump-game-ii/

给定一个长度为 n0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i]
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]

思路

这里我们可以利用层序遍历的思想进行数组遍历,从第一步开始,计算每一步能跨出的范围内最大的那个数字的步数,这样我们就可以找到需要使用的最小的跳跃步数。

代码文章来源地址https://www.toymoban.com/news/detail-847194.html

class Solution {
public:
    int jump(vector<int>& nums) {
        int left=0,right=0,maxPos=0,count=0,n=nums.size();
        while(left<=right){
            if(maxPos>=n-1) return count;
            for(int i=left;i<=right;i++) maxPos=max(maxPos,nums[i]+i);
            left=right+1;
            right=maxPos;
            count++;
        }
        return -1;
    }
};

02.跳跃游戏

题目链接:https://leetcode.cn/problems/jump-game/

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105

思路

这道题可以借用上面的思想,只需修改返回值即可。

代码

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int left=0,right=0,maxPos=0,count=0,n=nums.size();
        while(left<=right){
            if(maxPos>=n-1) return true;
            for(int i=left;i<=right;i++) maxPos=max(maxPos,nums[i]+i);
            left=right+1;
            right=maxPos;
            count++;
        }
        return false;
    }
};

03.加油站

题目链接:https://leetcode.cn/problems/gas-station/

在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

给定两个整数数组 gascost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

示例 1:

输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:

输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

提示:

  • gas.length == n
  • cost.length == n
  • 1 <= n <= 105
  • 0 <= gas[i], cost[i] <= 104

思路

枚举所有起点,模拟加油的流程,但在这里做一个优化,就是贪心思想,我们在枚举每一个点时,若该点不成功,就直接跳过中间所有点,这样我们可以做很大的优化。

代码

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int n=gas.size();
        for(int i=0;i<n;i++){
            int rest = 0, step = 0;
            while(step<n){
                int  index=(i+step)%n;
                rest+=gas[index]-cost[index];
                if(rest<0) break;
                step++;
            }
            if(rest>=0) return i;
            i+=step;
        }
        return -1;
    }
};

04.单调递增的数字

题目链接:https://leetcode.cn/problems/monotone-increasing-digits/

当且仅当每个相邻位数上的数字 xy 满足 x <= y 时,我们称这个整数是单调递增的。

给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增

示例 1:

输入: n = 10
输出: 9

示例 2:

输入: n = 1234
输出: 1234

示例 3:

输入: n = 332
输出: 299

提示:

  • 0 <= n <= 109

思路

为了方便处理数字,我们可以先将整数转换成字符串,然后从左往右扫描,找到第一个递减的位置,然后从这个位置往前推,推到相同数字的最前端,该位置-1,后面所有数都改成9,这样就得到最终结果

代码

class Solution {
public:
    int monotoneIncreasingDigits(int n) {
        string s=to_string(n);

        int i=0,m=s.size();
        while(i+1<m&&s[i]<=s[i+1]) i++;

        if(i+1==m) return n;

        while(i-1>=0&&s[i]==s[i-1]) i--;

        s[i]--;
        for(int j=i+1;j<m;j++) s[j]='9';
        return stoi(s);
    }
};

到了这里,关于算法沉淀——贪心算法五(leetcode真题剖析)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法沉淀——贪心算法七(leetcode真题剖析)

    题目链接:https://leetcode.cn/problems/integer-replacement/ 给定一个正整数 n ,你可以做如下操作: 如果 n 是偶数,则用 n / 2 替换 n 。 如果 n 是奇数,则可以用 n + 1 或 n - 1 替换 n 。 返回 n 变为 1 所需的 最小替换次数 。 示例 1: 示例 2: 示例 3: 提示: 1 = n = 2^31 - 1 思路 这里我们

    2024年03月23日
    浏览(47)
  • 算法沉淀——递归(leetcode真题剖析)

    递归是一种通过调用自身的方式来解决问题的算法。在递归算法中,问题被分解为更小的相似子问题,然后通过对这些子问题的解进行组合来解决原始问题。递归算法通常包含两个主要部分: 基本情况(Base Case): 定义问题的最小规模,直接解答而不再进行递归。基本情况

    2024年02月20日
    浏览(42)
  • 算法沉淀——栈(leetcode真题剖析)

    栈(Stack)是一种基于先进后出(Last In, First Out,LIFO)原则的数据结构。栈具有两个主要的操作: 压栈(Push) :将元素添加到栈的顶部。 出栈(Pop) :从栈的顶部移除元素。 栈常常用于需要反转操作顺序的场景,或者在需要记录操作历史的情况下。在算法中,栈的应用广

    2024年02月20日
    浏览(38)
  • 算法沉淀——多源 BFS(leetcode真题剖析)

    多源 BFS 是指从多个源点同时进行广度优先搜索的算法。在传统的 BFS 中,我们通常从一个起始点开始,逐层遍历所有的相邻节点。而在多源 BFS 中,我们可以同时从多个源点开始,从这些源点出发,逐层向外扩展,直到达到目标或者遍历完整个图。 多源 BFS 可以用于解决一些

    2024年02月19日
    浏览(44)
  • 算法沉淀——BFS 解决 FloodFill 算法(leetcode真题剖析)

    BFS(广度优先搜索)解决 Flood Fill 算法的基本思想是通过从起始点开始,逐层向外扩展,访问所有与起始点相连且具有相同特性(颜色等)的区域。在 Flood Fill 中,通常是通过修改图像的像素颜色。 下面是 BFS 解决 Flood Fill 算法的步骤: 初始化: 将起始点的颜色修改为新的

    2024年02月20日
    浏览(37)
  • 算法沉淀——BFS 解决拓扑排序(leetcode真题剖析)

    Breadth-First Search (BFS) 在拓扑排序中的应用主要是用来解决有向无环图(DAG)的拓扑排序问题。拓扑排序是对有向图中所有节点的一种线性排序,使得对于每一条有向边 (u, v),节点 u 在排序中都出现在节点 v 的前面。如果图中存在环路,则无法进行拓扑排序。 BFS 解决拓扑排序

    2024年02月21日
    浏览(39)
  • 算法沉淀——优先级队列(堆)(leetcode真题剖析)

    优先队列(Priority Queue)是一种抽象数据类型,它类似于队列(Queue),但是每个元素都有一个关联的优先级。在优先队列中,元素按照优先级从高到低(或从低到高)排列,高优先级的元素先出队。这种数据结构可以用堆(Heap)来实现。 堆是一种二叉树结构,有两种主要类

    2024年02月22日
    浏览(47)
  • 算法沉淀——BFS 解决最短路问题(leetcode真题剖析)

    BFS (广度优先搜索)是解决最短路径问题的一种常见算法。在这种情况下,我们通常使用BFS来查找从一个起始点到目标点的最短路径。 具体步骤如下: 初始化: 从起始点开始,将其放入队列中,并标记为已访问。 BFS遍历: 不断从队列中取出顶点,然后探索与该顶点相邻且

    2024年02月20日
    浏览(39)
  • 算法沉淀——穷举、暴搜、深搜、回溯、剪枝综合练习一(leetcode真题剖析)

    题目链接:https://leetcode.cn/problems/permutations/ 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 示例 2: 示例 3: 提示: 1 = nums.length = 6 -10 = nums[i] = 10 nums 中的所有整数 互不相同 思路 这是一个典型的回溯问题,需要在每

    2024年02月21日
    浏览(61)
  • 2023华为OD机试真题【区间交叠/贪心算法】【Python Java】

    给定坐标轴上的一组线段,线段的起点和终点均为整数并且长度不小于1,请你从中找到最少数量的线段,这些线段可以覆盖住所有线段。 输入描述 第一行输入为所有线段的数量,不超过10000,后面每行表示一条线段,格式为”x,y”, x和y 分别表示起点和终点,取值范围是

    2024年02月13日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包