交叉编译器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的区别

这篇具有很好参考价值的文章主要介绍了交叉编译器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的区别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

自己之前一直没搞清楚这两个交叉编译器到底有什么问题,特意google一番,总结如下,希望能帮到道上和我有同样困惑的兄弟……

1)什么是ABI和EABI

ABI: 二进制应用程序接口(Application Binary Interface (ABI) for the ARM Architecture)
在计算机中,应用二进制接口描述了应用程序(或者其他类型)和操作系统之间或其他应用程序的低级接口.
ABI涵盖了各种细节,如:

  • 数据类型的大小、布局和对齐。
  • 调用约定(控制着函数的参数如何传送以及如何接受返回值),例如,是所有的参数都通过栈传递,还是部分参数通过寄存器传递;哪个寄存器用于哪个函数参数;通过栈传递的第一个函数参数是最先push到栈上还是最后。
  • 系统调用的编码和一个应用如何向操作系统进行系统调用;以及在一个完整的操作系统ABI中,目标文件的二进制格式、程序库等等。
  • 一个完整的ABI,像Intel二进制兼容标准 (iBCS) ,允许支持它的操作系统上的程序不经修改在其他支持此ABI的操作体统上运行。

ABI不同于应用程序接口(API),API定义了源代码和库之间的接口,因此同样的代码可以在支持这个API的任何系统中编译,ABI允许编译好的目标代码在使用兼容ABI的系统中无需改动就能运行。

2) EABI: 嵌入式ABI

ABI: 二进制应用程序接口(Embedded Application Binary Interface (ABI) for the ARM Architecture)
嵌入式应用二进制接口指定了文件格式、数据类型、寄存器使用、堆积组织优化和在一个嵌入式软件中的参数的标准约定。
开发者使用自己的汇编语言也可以使用EABI作为与兼容的编译器生成的汇编语言的接口。
支持EABI的编译器创建的目标文件可以和使用类似编译器产生的代码兼容,这样允许开发者链接一个由不同编译器产生的库。
EABI与关于通用计算机的ABI的主要区别是应用程序代码中允许使用特权指令,不需要动态链接(有时是禁止的),和更紧凑的堆栈帧组织用来节省内存。广泛使用EABI的有Power PC和ARM.

3)gnueabi相关的两个交叉编译器: gnueabi和gnueabihf

在debian源里这两个交叉编译器的定义如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可见这两个交叉编译器适用于armel和armhf两个不同的架构, armel和armhf这两种架构在对待浮点运算采取了不同的策略(有fpu的arm才能支持这两种浮点运算策略)

其实这两个交叉编译器只不过是gcc的选项-mfloat-abi的默认值不同. gcc的选项-mfloat-abi有三种值soft,softfp,hard(其中后两者都要求arm里有fpu浮点运算单元,soft与后两者是兼容的,但softfp和hard两种模式互不兼容):

  • soft : 不用fpu进行浮点计算,即使有fpu浮点运算单元也不用,而是使用软件模式。
  • softfp : armel架构(对应的编译器为gcc-arm-linux-gnueabi)采用的默认值,用fpu计算,但是传参数用普通寄存器传,这样中断的时候,只需要保存普通寄存器,中断负荷小,但是参数需要转换成浮点的再计算。
  • hard : armhf架构(对应的编译器gcc-arm-linux-gnueabihf)采用的默认值,用fpu计算,传参数也用fpu中的浮点寄存器传,省去了转换, 性能最好,但是中断负荷高。

4)把以下测试使用的c文件内容保存成mfloat.c

#include <stdio.h>
int main(void)
{
double a,b,c;
a = 23.543;
b = 323.234;
c = b/a;
printf(“the 13/2 = %f\n”, c);
printf(“hello world !\n”);
return 0;
}
  1. 使用arm-linux-gnueabihf-gcc编译,使用“-v”选项以获取更详细的信息: arm-linux-gnueabihf-gcc -v mfloat.c

    COLLECT_GCC_OPTIONS=’-v’ ‘-march=armv7-a’ ‘-mfloat-abi=hard’ ‘-mfpu=vfpv3-d16′ ‘-mthumb’
    -mfloat-abi=hard,可看出使用hard硬件浮点模式。

  2. 使用arm-linux-gnueabi-gcc编译: arm-linux-gnueabi-gcc -v mfloat.c

    COLLECT_GCC_OPTIONS=’-v’ ‘-march=armv7-a’ ‘-mfloat-abi=softfp’ ‘-mfpu=vfpv3-d16′ ‘-mthumb’
    -mfloat-abi=softfp,可看出使用softfp模式。

5)拓展阅读

下文阐述了ARM代码编译时的软浮点(soft-float)和硬浮点(hard-float)的编译以及链接实现时的不同。从VFP浮点单元的引入到软浮点(soft-float)和硬浮点(hard-float)的概念

VFP (vector floating-point)
从ARMv5开始,就有可选的 Vector Floating Point (VFP) 模块,当然最新的如 Cortex-A8, Cortex-A9 和 Cortex-A5 可以配置成不带VFP的模式供芯片厂商选择。
VFP经过若干年的发展,有VFPv2 (一些 ARM9 / ARM11)、 VFPv3-D16(只使用16个浮点寄存器,默认为32个)和VFPv3+NEON (如大多数的Cortex-A8芯片) 。对于包含NEON的ARM芯片,NEON一般和VFP公用寄存器。

硬浮点Hard-float
编译器将代码直接编译成发射给硬件浮点协处理器(浮点运算单元FPU)去执行。FPU通常有一套额外的寄存器来完成浮点参数传递和运算。
使用实际的硬件浮点运算单元FPU当然会带来性能的提升。因为往往一个浮点的函数调用需要几个或者几十个时钟周期。

软浮点 Soft-float
编译器把浮点运算转换成浮点运算的函数调用和库函数调用,没有FPU的指令调用,也没有浮点寄存器的参数传递。浮点参数的传递也是通过ARM寄存器或者堆栈完成。
现在的Linux系统默认编译选择使用hard-float,即使系统没有任何浮点处理器单元,这就会产生非法指令和异常。因而一般的系统镜像都采用软浮点以兼容没有VFP的处理器。

armel ABI和armhf ABI
在armel中,关于浮点数计算的约定有三种。以gcc为例,对应的-mfloat-abi参数值有三个:soft,softfp,hard。

  • soft是指所有浮点运算全部在软件层实现,效率当然不高,会存在不必要的浮点到整数、整数到浮点的转换,只适合于早期没有浮点计算单元的ARM处理器;
  • softfp是目前armel的默认设置,它将浮点计算交给FPU处理,但函数参数的传递使用通用的整型寄存器而不是FPU寄存器;
  • hard则使用FPU浮点寄存器将函数参数传递给FPU处理。

需要注意的是,在兼容性上,soft与后两者是兼容的,但softfp和hard两种模式不兼容。默认情况下,armel使用softfp,因此将hard模式的armel单独作为一个abi,称之为armhf。
而使用hard模式,在每次浮点相关函数调用时,平均能节省20个CPU周期。对ARM这样每个周期都很重要的体系结构来说,这样的提升无疑是巨大的。
在完全不改变源码和配置的情况下,在一些应用程序上,使用armhf能得到20%——25%的性能提升。对一些严重依赖于浮点运算的程序,更是可以达到300%的性能提升。

Soft-float和hard-float的编译选项:
在CodeSourcery gcc的编译参数上,使用-mfloat-abi=name来指定浮点运算处理方式。-mfpu=name来指定浮点协处理的类型。
可选类型如fpa,fpe2,fpe3,maverick,vfp,vfpv3,vfpv3-fp16,vfpv3-d16,vfpv3-d16-fp16,vfpv3xd,vfpv3xd-fp16,neon,neon-fp16,vfpv4,vfpv4-d16,fpv4-sp-d16,neon-vfpv4等。
使用-mfloat-abi=hard (等价于-mhard-float) -mfpu=vfp来选择编译成硬浮点。使用-mfloat-abi=softfp就能兼容带VFP的硬件以及soft-float的软件实现,运行时的连接器ld.so会在执行浮点运算时对于运算单元的选择,是直接的硬件调用还是库函数调用,是执行/lib还是/lib/vfp下的libm。-mfloat-abi=soft (等价于-msoft-float)直接调用软浮点实现库。

在ARM RVCT工具链下,定义fpu模式:
–fpu softvfp
–fpu softvfp+vfpv2
–fpu softvfp+vfpv3
–fpu softvfp+vfpv_fp16
–fpu softvfp+vfpv_d16
–fpu softvfp+vfpv_d16_fp16

定义浮点运算类型:
–fpmode ieee_full : 所有单精度float和双精度double的精度都要和IEEE标准一致,具体的模式可以在运行时动态指定;
–fpmode ieee_fixed : 舍入到最接近的实现的IEEE标准,不带不精确的异常;
–fpmode ieee_no_fenv :舍入到最接近的实现的IEEE标准,不带异常;
–fpmode std :非规格数flush到0、舍入到最接近的实现的IEEE标准,不带异常;
–fpmode fast : 更积极的优化,可能会有一点精度损失。文章来源地址https://www.toymoban.com/news/detail-847632.html

到了这里,关于交叉编译器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的区别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • arm系列交叉编译器各版本区别

    交叉编译器的命名规则:arch [-vendor] [-os] [-(gnu)eabi] [-language] arch - 体系架构, 如arm(ARM-32bit)、aarch64(ARM-64bit)、x86等; vendor -工具链提供商,经常省略,或用 none 替代; os - 目标操作系统, 如linux,没针对具体 os 则 用 none 替代。同时没有 vendor 和os 使用一个 none 替代。

    2024年02月01日
    浏览(62)
  • 交叉编译器介绍

    简介 ​ 要在 X86 的电脑上编译出能够在 Arm 上运行的程序,我们必须明确告诉编译器,编译生成的可执行文件需要以 Arm 指令集的标准编码。开发者们为不同的芯片开发了不同的编译器,比如针对 Arm 平台的 arm-linux-gcc,针对 mips 平台的 mips-linux-gnu-gcc,这些编译器都是基于 G

    2024年02月06日
    浏览(63)
  • riscv-gnu-toolchain 交叉编译器如何构建?

    这个指令在编译完成后会自动安装到“/opt/riscv/gcc”目录,由于要操作“/opt/riscv/gcc”目录需要超级管理员权限,所以我们要记得加上 sudo 切换到“/opt/riscv/gcc/bin”目录下,执行如下指令 看是否有riscv64-unknown-elf-gcc版本信息

    2024年04月22日
    浏览(42)
  • [笔记]ARMv7/ARMv8 交叉编译器下载

    开发 Cortex-A7、Cortex-A72 或其他 ARM 架构 profile 芯片时,经常需要下载对应架构的交叉编译器,所以写这篇笔记,用于记录一下交叉编译器下载流程,免得搞忘。 编译环境:ubuntu 虚拟机 下载地址 我们可以从 ARM 官网的 Arm Developer下载交叉编译器,这个网站也包含几乎所有的 A

    2024年02月02日
    浏览(52)
  • ARM嵌入式编译器编译优化选项 -O

    Arm嵌入式编译器可以执行一些优化来减少代码量并提高应用程序的性能。不同的优化级别有不同的优化目标,不仅如此,针对某个目标进行优化会对其他目标产生影响。比如想减小生成的代码量,势必会影响到该代码的性能。所以优化级别总是这些不同目标(代码量,程序性

    2024年02月16日
    浏览(65)
  • ARM编译器5.06下载安装

    进入官方网站ARM Complier v5.06官网下载页面 进入后的界面为 往下翻,找到如图位置的5.06 for windows的文件,点击下载,下载时需要登录账号 先解压下载的压缩文件,在installer文件夹里面有一个 setup.exe 文件,双击它, 同意协议,在安装位置选择 keil 安装位置的 ARM 文件夹下,在

    2024年02月22日
    浏览(47)
  • KEIL MDK arm编译器 添加教程

    1.下载编译器安装文件 arm编译器6.16(适用于windows 64位)安装文件可在如下网址免费下载: arm编译器6.16(适用于Windows64位)-嵌入式文档类资源-CSDN文库 https://download.csdn.net/download/WG_IECAS/87342708 如需其他版本编译器,可到KEIL官网查找下载,快速网址: Arm Compiler downloads index h

    2023年04月08日
    浏览(59)
  • ARM 编译器 Arm Compiler for Embedded 6 相关工具链简介

    目录 1, Introduction to Arm® Compiler 6 1.1 armclang 1.2 armasm 1.3 armlink 1.4 armar 1.5 fromelf 1.6 Arm C++ libraries 1.7 Arm C libraries 1,8 Application development ,ARM程序开发流程 2,ARM 编译器 5和ARM 编译器 6的兼容性 3,ARM编译器相关链接 Arm Compiler 6 是 Arm 中用于 Arm Cortex® 和 Arm Neoverse™ 处理器的最先

    2023年04月12日
    浏览(45)
  • Keil5,ARM编译器 软件优化注意事项

    循环是大多数程序中的常见结构。由于大量的执行时间通常花费在循环中,因此值得关注时间关键循环。 如果不谨慎地编写,环路终止条件可能会导致大量开销。在可能的情况下: 使用简单的终止条件。 写入倒计时到零循环。 使用  unsigned int  类型的计数器。 测试与零的

    2024年02月03日
    浏览(52)
  • 解决keil5.38编译stm32报四个错误问题,无需更换ARM5编译器

     以上为错误截图,一下为错误信息 Start/core_cm3.c(445): error: non-ASM statement in naked function is not supported   uint32_t result=0;   ^ Start/core_cm3.c(442): note: attribute is here uint32_t __get_PSP(void) __attribute__( ( naked ) );                                           ^ Start/core_cm3.c(465): error: paramet

    2024年02月11日
    浏览(270)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包