分类预测 | Matlab实现DRN深度残差网络数据分类预测

这篇具有很好参考价值的文章主要介绍了分类预测 | Matlab实现DRN深度残差网络数据分类预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类预测 | Matlab实现DRN深度残差网络数据分类预测

分类效果

分类预测 | Matlab实现DRN深度残差网络数据分类预测,分类预测,DRN,深度残差网络,数据分类预测

分类预测 | Matlab实现DRN深度残差网络数据分类预测,分类预测,DRN,深度残差网络,数据分类预测
分类预测 | Matlab实现DRN深度残差网络数据分类预测,分类预测,DRN,深度残差网络,数据分类预测
分类预测 | Matlab实现DRN深度残差网络数据分类预测,分类预测,DRN,深度残差网络,数据分类预测

分类预测 | Matlab实现DRN深度残差网络数据分类预测,分类预测,DRN,深度残差网络,数据分类预测

基本介绍

1.Matlab实现DRN深度残差网络数据分类预测(完整源码和数据),运行环境为Matlab2023及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现DRN深度残差网络数据分类预测(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

lgraph = layerGraph();
%% Add Layer Branches
% Add the branches of the network to the layer graph. Each branch is a linear 
% array of layers.

tempLayers = [
    imageInputLayer(inputshape,"Name","input")
    convolution2dLayer([7 7],64,"Name","conv1","Padding",[3 3 3 3],"Stride",[2 2])
    batchNormalizationLayer("Name","bn_conv1","Epsilon",0.001)
    reluLayer("Name","activation_1_relu")
    maxPooling2dLayer([3 3],"Name","max_pooling2d_1","Padding",[1 1 1 1],"Stride",[2 2])];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    convolution2dLayer([1 1],256,"Name","res2a_branch1","BiasLearnRateFactor",0)
    batchNormalizationLayer("Name","bn2a_branch1","Epsilon",0.001)];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    convolution2dLayer([1 1],64,"Name","res2a_branch2a","BiasLearnRateFactor",0)
    batchNormalizationLayer("Name","bn2a_branch2a","Epsilon",0.001)
    reluLayer("Name","activation_2_relu")
    convolution2dLayer([3 3],64,"Name","res2a_branch2b","BiasLearnRateFactor",0,"Padding","same")
    batchNormalizationLayer("Name","bn2a_branch2b","Epsilon",0.001)
    reluLayer("Name","activation_3_relu")
    convolution2dLayer([1 1],256,"Name","res2a_branch2c","BiasLearnRateFactor",0)
    batchNormalizationLayer("Name","bn2a_branch2c","Epsilon",0.001)];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    additionLayer(2,"Name","add_1")
    reluLayer("Name","activation_4_relu")];
lgraph = addLayers(lgraph,tempLayers);


参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-847704.html

到了这里,关于分类预测 | Matlab实现DRN深度残差网络数据分类预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包