【数据结构】——单链表超详细介绍(小白必看!!!)

这篇具有很好参考价值的文章主要介绍了【数据结构】——单链表超详细介绍(小白必看!!!)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【数据结构】——单链表超详细介绍(小白必看!!!),C语言数据结构,数据结构

 c语言中的小小白-CSDN博客c语言中的小小白关注算法,c++,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm=1001.2014.3001.5343

【数据结构】——单链表超详细介绍(小白必看!!!),C语言数据结构,数据结构

给大家分享一句我很喜欢我话:

知不足而奋进,望远山而前行!!!

铁铁们,成功的路上必然是孤独且艰难的,但是我们不可以放弃,远山就在前方,但我们能力仍然不足,所有我们更要奋进前行!!!

今天我们更新了单链表内容,

🎉 欢迎大家关注🔍点赞👍收藏⭐️留言📝

链表的概念:

概念:链表是一种物理存储结构非连续、非顺序的存储结构,但链表在逻辑上连续的,顺序的,而数据元素的逻辑顺序是通过链表中的指针连接次序实现的。

链表的结构:

链表是由一个个结点组成的,结点如下图所示:

【数据结构】——单链表超详细介绍(小白必看!!!),C语言数据结构,数据结构

注意:链表中的最后一个结点的next指向空,next=NULL

一个个结点串成了链表,如下图所示:

【数据结构】——单链表超详细介绍(小白必看!!!),C语言数据结构,数据结构

 有人可能会有疑问,不是说链表只是在逻辑结构上是连续的,在物理存储结构上是不连续的,那为什么上图中一个个结点明明是挨在一起的,那么它在物理存储结构上肯定是连续的呀,其实不然,上图是为了方便大家理解,才用线条连接了结点,实际上在内存中,每个结点可能会隔得很远,仔细观察每个结点上面的红色文字,那就是这个结点的地址,而蓝色文字是下一个结点的地址,很明显能看到这两个结点并不是相邻的,因此也验证了顺序表在逻辑结构上确实是连续的,但在物理存储结构上确实是不连续的。

链表的实现:

1.1定义节点

介绍一下单链表的英文名——single linked list,我们简写成SL(区别于顺序表的SeqList或者SQL)。

typedef int SLTDateType;
typedef  struct SListNode
{
	SLTDateType Date;
	SListNode* next;
}SListNode;

1.2链表的功能

链表要实现那些功能呢?其实这些功能我们都很熟悉,数据结构无非是对数据进行管理,要实现数据的增删查改,因此链表的基本功能也都是围绕着数据的增删查改展开。

这里我们要注意一点,链表是不需要进行初始化的

//创建一个结点
SLTNode* BuyListNode(SLTDateType x);
//销毁单链表
void SLTDestory(SLTNode** pphead);
//单链表头插
void SLTPushFront(SLTNode** pphead, SLTDateType x);
//单链表尾插
void SLTPushBack(SLTNode** pphead, SLTDateType x);
//单链表头删
void SLTPopFront(SLTNode** pphead);
//单链表尾删
void SLTPopBack(SLTNode** pphead);
//单链表结点查找
SLTNode* SLTNodeFind(SLTNode* phead, SLTDateType x);
//单链表结点删除(删除pos位置的结点)
void SLTErase(SLTNode** pphead, SLTNode* pos);
//单链表结点插入(在pos之前插入)
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDateType x);
// 单链表结点插入(在pos之后插入)
void SLTInsertBack(SLTNode** pphead, SLTNode* pos, SLTDateType x);
// 单链表结点修改
void SLTModify(SLTNode* phead, SLTNode* pos, SLTDateType x);
//打印单链表
void PrintSLT(SLTNode * phead);

链表功能的实现

2.1打印单链表

注意:链表和顺序不同的是,顺序表传过来的指针是肯定不会为空的,而链表传过来的指针是可能为空的,比如说当链表中没有元素时,头指针所指向的就是NULL,如果在第一行写上断言就会有问题。

当cur指向空的时候就可以停止打印了。

void PrintSLT(SListNode*phead)
{
	//注意:不需要断言assert(psl);
	SListNode* cur = phead;
	while (cur)
	{
		printf("%d->", cur->date);
		cur = cur->next;
	}
	printf("NULL");
	printf("\n");
	//最后打印出来的效果就是 1->2->3->4->NULL
}

2.2 创建一个新结点

后面我们要在单链表中进行头插和尾插,此时插入的不再是像顺序表一样简单的SLDateType数据了,而是一个结点,这个结点是包括SLTDateType数据以及SLTDateType*的指针,因此,为了方便和减少代码的重复度,我们另写一个函数用来专门创建新结点

//创建一个新结点
SListNode* BuySLTNode(SLDateType x)
{
	SListNode* newNode = (SListNode*)malloc(sizeof(SListNode));
	if (newNode == NULL)
	{
		perror("malloc:");
		return;
	}
	newNode->date = x;
	newNode->next = NULL;
	return newNode;
}

2.3 单链表尾插

注意:在创建结点时,已经让 结点.next=NULL,所以不需要在插入完结点后,再让新结点的next指针为NULL。

有人可能会有疑问,为什么之前打印链表的时候不用断言指针,而在尾插时就要断言指针,以及为什么函数的形参是二级指针,而不使用一级指针。

因为,尾插分为两种情况(下面有写),当链表为空时,头指针phead指向NULL,尾插相当于头插,此时要改变phead的指向,让phead指向这个新结点,此时就需要二级指针来改变一级指针的值(如果我们用一级指针做形参,形参的改变不会影响实参,那么一级指针phead就不会被改变)。

至于这个什么时候要断言指针,什么时候不用断言指针:一级指针也就是phead,当链表为空的时候,phead就是为NULL,而二级指针永远指向phead,phead的地址是永远存在的,那么pphead就一定不可能为空,所以需要断言pphead。

//单链表尾插
void SLTPushBack(SListNode**pphead, SLDateType x)
{
	assert(pphead);
	SListNode* newnode = BuySLTNode(x);
	//1.链表为空
	//2.链表不为空
	if (*pphead == NULL)
	{
		*pphead = newnode;
        //不需要让newnode->next=NULL,在BuySLTNode中我们就已经进行过这个操作了
	}
	else
	{
		//找到链表的尾巴tail
		SListNode* tail = *pphead;
		while (tail->next)
		{
			tail = tail->next;
		}
		tail->next = newnode;
	}
}

2.4顺序表头删

头删没什么好说的,记住要断言*pphead,保证链表内容不为空。

//头删
void SListPopFront(SListNode** pphead)
{
	assert(pphead);
	assert(*pphead);
	SListNode* cur = *pphead;
	*pphead = (*pphead)->next;
	free(cur);
	cur = NULL;
}

2.5顺序表头插

现在是不是觉得头插很简单了啊!

//头插
void SListPushFront(SListNode** pphead,SLDateType x)
{
	assert(pphead);
	SListNode* newnode = BuySLTNode(x);
	newnode->next = *pphead;
	*pphead = newnode;
}

2.6查找某个结点

这个函数返回值不再是void,而是SListNode*,把找到的结点的地址返回去,这个函数一般会跟结点修改之类的函数一起使用。

//单链表结点的查找
SListNode* SListNodeFind(SListNode* phead,SLDateType x)
{
	SListNode* cur = phead;
	while (cur)
	{
		if (cur->date == x)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

2.7删除某个结点

//删除某个结点
void SListNodeErase(SListNode** pphead, SListNode* pos)
{
	assert(pphead);
	assert(pos);
	//头删
	//非头删
	if (*pphead == pos)
	{
		SListNode* cur = *pphead;
		*pphead = (*pphead)->next;
		free(cur);
		cur = NULL;
	}
	else
	{
		SListNode* prev = *pphead;
		while (prev->next != pos)
		{
			prev = prev->next;
			assert(prev->next);
			//这里为什么要加个断言?
		}
		prev->next = pos->next;
		free(pos);
	}
}

注意:

  1. pos也要断言,pos可不能为空呀!
  2. cur->next也要断言,因为当cur->next为NULL时,说明整个链表的结点都排查完了,最后还是没有找到地址为pos的结点,证明pos传值有误。

 2.8单链表结点修改

// 单链表结点修改
void SLTModify(SLTNode* phead, SLTNode* pos, SLTDateType x)
{
	SLTNode* cur = phead;
	while (cur != pos)
	{
		cur = cur->next;
		assert(cur);
	}
	pos->data = x;
}

2.9单链表前插入结点

//单链表前插入结点
void SLTInsertFront(SListNode** pphead, SListNode* pos,SLDateType x)
{
	assert(pphead);
	assert(pos);
	//头插
	//非头插
	SListNode* newnode = BuySLTNode(x);
	if ((*pphead)->next == pos)
	{
		newnode->next = *pphead;
		*pphead = newnode;
	}
	else
	{
		SListNode* prev = *pphead;
		while (prev->next != pos)
		{
			prev = prev->next;
			assert(prev->next);
		}
		newnode->next = pos;
		prev->next = newnode;
	}
}

2.10单链表后插入结点

这里我要提醒一下,千万不要忘记判断pos是否正确,不要只单单断言pos是否为NULL,还要判断能不能在链表中找到pos这个地址(我第一次写链表就忘记检查了,第二次写还是忘记了,非常容易忘记

//单链表后插入结点
void SLTInsertBack(SListNode* phead, SListNode* pos, SLDateType x)
{
	assert(pos);
	SListNode* cur = phead;
	//防止pos传错了
	while (cur != pos)
	{
		cur = cur->next;
		assert(pos);
	}
	SListNode* newnode = BuySLTNode(x);
	newnode->next = pos->next;
	pos->next = newnode;
}

2.11销毁链表

销毁链表这一块,咱可不敢直接free(phead),因为链表在物理结构上是不连续存储的,销毁链表必须要一个结点一个结点去销毁!!!!最后不要忘记把phead置为NULL文章来源地址https://www.toymoban.com/news/detail-847737.html

//销毁链表
void SLTDestory(SListNode** pphead)
{
	assert(pphead);
	SListNode* cur = *pphead;
	while (cur)
	{
		SListNode* next = cur->next;
		free(cur);
		cur = next;
	}
	*pphead = NULL;
}

总代码:

3.1 SLT.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int SLTDateType;
typedef struct SLTNode
{
	SLTDateType data;
	struct SLTNode* next;
}SLTNode;
//创建一个结点
SLTNode* BuyListNode(SLTDateType x);
//销毁单链表
void SLTDestory(SLTNode** pphead);
//单链表头插
void SLTPushFront(SLTNode** pphead, SLTDateType x);
//单链表尾插
void SLTPushBack(SLTNode** pphead, SLTDateType x);
//单链表头删
void SLTPopFront(SLTNode** pphead);
//单链表尾删
void SLTPopBack(SLTNode** pphead);
//单链表结点查找
SLTNode* SLTNodeFind(SLTNode* phead, SLTDateType x);
//单链表结点删除(删除pos位置的结点)
void SLTErase(SLTNode** pphead, SLTNode* pos);
//单链表结点插入(在pos之前插入)
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDateType x);
// 单链表结点插入(在pos之后插入)
void SLTInsertBack(SLTNode** pphead, SLTNode* pos, SLTDateType x);
// 单链表结点修改
void SLTModify(SLTNode* phead, SLTNode* pos, SLTDateType x);
//打印单链表
void PrintSLT(SLTNode * phead);

3.2 SLT.c

#include"SLT.h"
 
//建立一个新的结点
//这是链表的缺点:经常需要使用malloc为newnode开辟空间
SLTNode* BuyListNode(SLTDateType x)
{
	//为什么要用malloc,是因为,如果在BuyListNode函数中SLTNode newnode,出了这个函数,newnode就被销毁了,
	//用malloc开辟空间,只要我们不主动释放这个空间,这个空间的数据一直存在,
	SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));
	//static SLTNode newnode;
	if (newnode == NULL)
	{
		perror("malloc:");
		exit(0);
	}
	newnode->data = x;
	newnode->next = NULL;
	return newnode;
}
 
//头插
void SLTPushFront(SLTNode** pphead, SLTDateType x)
{
	assert(pphead);//phead可能为NULL,但是pphead指向phead,不可能为空
	SLTNode* newnode = BuyListNode(x);
	//这里可不是newnode->next = (*pphead)->next;
	newnode->next = *pphead;
	*pphead = newnode;
}
 
 
//尾插
//尾插特别容易出错,当链表中没有数据,即phead=NULL时,尾插就相当于头插了,此时需要改变phead的值
void SLTPushBack(SLTNode** pphead, SLTDateType x)
{
	assert(pphead);
	SLTNode* newnode = BuyListNode(x);
	//1、空
	//2、非空
	if (*pphead == NULL)
	{
		*pphead = newnode;
		//newnode->next = NULL;这一步是不需要的,newnode在建立的时候就默认newnode->next=NULL;
	}
	else
	{
		SLTNode* cur = *pphead;
		//这是单向链表的缺点,需要去找尾
		while (cur->next != NULL)
		{
			cur = cur->next;
		}
		cur->next = newnode;
	}
}
 
//头删
void SLTPopFront(SLTNode** pphead)
{
	assert(pphead);
	//温柔的检查
	if (*pphead == NULL)
		return;
	//暴力的检查
	assert(*pphead);
	SLTNode* head = *pphead;
	*pphead = (*pphead)->next;
	free(head);
	head = NULL;
}
 
//尾删
void SLTPopBack(SLTNode** pphead)
{
	assert(pphead);
	assert(*pphead);
	//1、一个结点
	//2、两个结点
	if ((*pphead)->next == NULL)
	{
		free(*pphead);
		*pphead = NULL;
	}
	else
	{
		SLTNode* cur = *pphead;
		while (cur->next->next)
		{
			cur = cur->next;
		}
		free(cur->next);
		cur->next = NULL;
	}
}
//打印单向链表
void PrintSLT(SLTNode* phead)
{
	SLTNode* cur = phead;
	while (cur != NULL)
	{
		printf("%d->", cur->data);
		cur = cur->next;
	}
	printf("NULL");
	printf("\n");
}
 
//单链表查找某个结点
SLTNode* SLTNodeFind(SLTNode* phead, SLTDateType x)
{
	SLTNode* find = phead;
	//别忘记分析找不到结点的情况
	while (find)
	{
		if (find->data == x)
		{
			return find;
		}
		find = find->next;
	}
	return NULL;
}
 
//删除pos位置的结点
void SLTErase(SLTNode** pphead, SLTNode* pos)
{
	assert(pphead);
	assert(pos);
	if (pos == *pphead)
	{
		SLTPopFront(pphead);
	}
	else
	{
		SLTNode* prev = *pphead;
		while (prev->next != pos)
		{
			prev = prev->next;
			//如果prev->next已经为空了,说明链表已经查完了,还没有查到pos
			//证明pos传入有误
			assert(prev->next);
		}
		prev->next = pos->next;
		free(pos);
		//pos = NULL;这个没必要,改变不了pos
	}
}
//单链表结点前插
//一般插入结点都是在pos之前插入,但单链表在实现前插是比较困难的
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDateType x)
{
	assert(pphead);
	//头插
	if (pos == *pphead)
	{
		SLTPushFront(pphead, x);
	}
	//非头插
	else
	{
		SLTNode* prev = *pphead;
		while (prev->next != pos)
		{
			prev = prev->next;
			assert(prev->next);
		}
		SLTNode* newnode = BuyListNode(x);
		prev->next = newnode;
		newnode->next = pos;
	}
}
//单链表结点后插
void SLTInsertBack(SLTNode** pphead, SLTNode* pos, SLTDateType x)
{
	SLTNode* cur = *pphead;
	while (cur != pos)
	{
		cur = cur->next;
		//防止pos传错了
		assert(cur);
	}
	SLTNode* newnode = BuyListNode(x);
	newnode->next = pos->next;
	pos->next = newnode;
}
 
// 单链表结点修改
void SLTModify(SLTNode* phead, SLTNode* pos, SLTDateType x)
{
	SLTNode* cur = phead;
	while (cur != pos)
	{
		cur = cur->next;
		assert(cur);
	}
	pos->data = x;
}
//销毁链表
void SLTDestory(SLTNode** pphead)
{
	assert(pphead);
	SLTNode* cur = *pphead;
	//比cur->next!=NULL更好一些
	while (cur)
	{
		SLTNode* next = cur->next;
		free(cur);
		cur = next;
	}
	*pphead = NULL;
}

3.3 test.c

#include"SLT.h"
void test1()
{
	SLTNode* plist = NULL;
	SLTPushFront(&plist, 0);
	SLTPushFront(&plist, -1);
	SLTPushBack(&plist, 1);
	SLTPushBack(&plist, 2);
	PrintSLT(plist);
	SLTPopFront(&plist);
	SLTPopBack(&plist);
	PrintSLT(plist);
	SLTNode* pos = SLTNodeFind(plist, 0);
	SLTInsert(&plist, pos, -2);
	PrintSLT(plist);
	SLTInsert(&plist, pos, -1);
	PrintSLT(plist);
	SLTInsertBack(&plist, pos, 3);
	PrintSLT(plist);
	SLTModify(plist, pos, 4);
	PrintSLT(plist);
}
int main()
{
	test1();
}

到了这里,关于【数据结构】——单链表超详细介绍(小白必看!!!)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】单链表 | 详细讲解

    无须为了表示中间的元素之间的逻辑关系而增加额外的存储空间; 因为以数组形式存储,可以快速地存取表中任一位置的元素。 插入和删除操作需要移动大量元素,时间复杂度为O(N); 当线性表长度变化较大时,难以确定存储空间的容量; 造成存储空间的“碎片”。 其实顺

    2024年02月05日
    浏览(48)
  • 【数据结构】吃透单链表!!!(详细解析~)

    上篇文章介绍了顺序表,这篇文章开始着重讲解链表了。 链表有很多种:单、双链表,循环、非循环链表还有带头、不带头的链表。 本篇的主要内容是单链表(无头,单向,非循环) 。 链表对比顺序表有哪些不同之处,接下来会带大家一起了解~ 1.头部和中间的插入删除效

    2024年02月12日
    浏览(40)
  • 数据结构——lesson3单链表介绍及实现

    目录   1.什么是链表? 2.链表的分类 (1)无头单向非循环链表: (2)带头双向循环链表: 3.单链表的实现  (1)单链表的定义 (2)动态创建节点 (3)单链表打印 (4)单链表尾插 (5)单链表头插 (6)单链表尾删 (7)单链表头删 (8)单链表查找 (9)单链表在pos位置

    2024年02月20日
    浏览(38)
  • 【数据结构】—C语言实现单链表(超详细!)

                                         食用指南:本文在有C基础的情况下食用更佳                                     🔥 这就不得不推荐此专栏了:   C语言                                      ♈️ 今日夜电波:  あなたは煙草

    2024年02月14日
    浏览(65)
  • 【数据结构】单双链表超详解!(图解+源码)

    🎥 屿小夏 : 个人主页 🔥个人专栏 : 数据结构解析 🌄 莫道桑榆晚,为霞尚满天! 什么是链表?链表有着什么样的结构性?它是怎么实现的? 看完这篇文章,你对链表的理解将会上升新的高度! 链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺

    2024年02月06日
    浏览(48)
  • 【数据结构】顺序表---C语言版(数据结构开篇小菜,全网最详细!小白看一遍就学会!!!)

    停更了一个月限时返场啦😍从本篇文章开始就进入了我们数据结构的学习喽!本篇文章也是《数据结构与算法》 专栏的第一篇文章,本篇的内容是顺序表的学习,也是数据结构的开胃小菜,希望烙铁们可以理解消化哦🥰!!! 在我们学习 顺序表 之前呢,我们大家肯定会有

    2024年02月06日
    浏览(46)
  • 【数据结构】二叉树遍历的实现(超详细解析,小白必看系列)

    目录 一、前言 🍎为何使用链式二叉树   🍐何为链式二叉树  🍉二叉树的构建 💦创建二叉链结构 💦手动构建一颗树  🍓二叉树的遍历 (重点) 💦前序遍历  💦中序遍历  💦后续遍历  🍌二叉树的经典问题(重点) 💦二叉树节点个数  💦二叉树叶子节点的个数  💦

    2024年02月02日
    浏览(49)
  • 详细介绍数据结构-堆

    在计算机科学中,堆(Heap)是一种重要的数据结构,它用于在动态分配时存储和组织数据。堆是一块连续的内存区域,其中每个存储单元(通常是字节)都与另一个存储单元紧密相邻。 堆和栈是计算机内存的两种主要部分。其中,栈用于存储局部变量和函数调用的信息,而

    2024年02月07日
    浏览(38)
  • 【C++&数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂](23)

    前言 大家好吖,欢迎来到 YY 滴数据结构系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁 主要内容含: 欢迎订阅 YY 滴C++专栏!更多干货持续更新!以下是传送门! YY的《C++》专栏 YY的《C++11》专栏 YY的《Linux》专栏 YY的《数据结构》专栏 YY的《C语言基础》专栏 YY的《初

    2024年02月05日
    浏览(114)
  • 【数据结构】数据结构小试牛刀之单链表

    不讲虚的啦,直接肝! 单链表所要实现的功能罗列如下: 初始化工作我们先初始化一个节点类型,类型中包括了数据域和指针域,数据与中保存着该节点要保存的数据,指针域则保存着链表下一个节点的地址: 然后我们在创建一个函数,用于创建一个新的节点,因为后面我

    2023年04月24日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包