基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统

这篇具有很好参考价值的文章主要介绍了基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💡💡💡本文摘要:基于YOLOv8的铁路工人安全作业检测系统,属于小目标检测范畴,并阐述了整个数据制作和训练可视化过程,

 

博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统,深度学习实战应用案列108篇,人工智能,深度学习,网络,目标检测,YOLO,计算机视觉

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统,深度学习实战应用案列108篇,人工智能,深度学习,网络,目标检测,YOLO,计算机视觉

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.铁路工人安全作业检测数据集介绍

该数据集用于正确检测工人、他们的反光背心和安全帽。该数据集有3222张图片,其中包含三个标签:工人、反光背心和安全帽。

用途举例:

  1. 可以判断是否有工人正在铁路上作业;
  2. 可以判断工人是否正确佩戴反光背心和安全帽规范作业。

部分数据集图片如下:

基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统,深度学习实战应用案列108篇,人工智能,深度学习,网络,目标检测,YOLO,计算机视觉

下图可以看出识别对象为小目标检测 

基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统,深度学习实战应用案列108篇,人工智能,深度学习,网络,目标检测,YOLO,计算机视觉

2.1 split_train_val.py

# coding:utf-8
 
import os
import random
import argparse
 
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
 
trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)
 
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
 
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
 
for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)
 
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

2.2 voc_label.py生成适合YOLOv8训练的txt

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train','val','test']
classes = ['vest','helmet','worker']

def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)
def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id))
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write('images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

3.如何训练YOLOv8

3.1 配置Railroad.yaml

ps:建议填写绝对路径


path: F:/ultralytics-RailroadWorkerDetection/data/Railroad # dataset root dir
train: train.txt  # train images (relative to 'path') 118287 images
val: val.txt  # val images (relative to 'path') 5000 images
 
# number of classes
nc: 3
 
# class names
names:
  0: vest
  1: helmet
  2: worker

3.2 如何训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')
    #model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='data/Railroad/Railroad.yaml',
                cache=False,
                imgsz=640,
                epochs=100,
                batch=32,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )

3.3 训练可视化结果

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统,深度学习实战应用案列108篇,人工智能,深度学习,网络,目标检测,YOLO,计算机视觉

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统,深度学习实战应用案列108篇,人工智能,深度学习,网络,目标检测,YOLO,计算机视觉

预测结果: 

基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统,深度学习实战应用案列108篇,人工智能,深度学习,网络,目标检测,YOLO,计算机视觉

关注下方名片点击关注,源码获取途径。  文章来源地址https://www.toymoban.com/news/detail-847768.html

到了这里,关于基于YOLOv8的摄像头下铁路工人安全作业检测(工人、反光背心和安全帽)系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5调用IP摄像头

    本文将展示IP摄像头的调用方法(以调用手机摄像头为例)。 首先在手机端下载可以联网调用手机摄像头的APP 我用的是这个 勾选RTSP,点击分享 记下局域网地址,后面代码中需要对应修改 更改detect.py中\\\'--source\\\'部分默认值,注意格式,然后点击运行即可 在PC端会出现和实时目

    2024年02月07日
    浏览(46)
  • yolov5傻瓜式调用usb摄像头

    环境:yolov5 5.0 电脑:戴尔笔记本 当你用requirement下载好yolov5的对应的包后就需要使用detect去检测图片了。 在5.0版本中,detect要修改的部分主要是以下部分 其中第一条是你的模型可以自己训练也可以用它本身自带的。 我们主要看第二条。 将default改为’0’使用摄像头。 一般

    2024年02月12日
    浏览(46)
  • 使用YOLOv5实现多摄像头实时目标检测

    这篇博客将在单摄像头目标检测的基础上,实现单网络多线程的实时目标检测。 在detect.py同级目录下新建streams.txt文件,每个视频流源单独成行: 本地摄像头填0 USB摄像头填1,2,3… IP摄像头要根据摄像头类型,按下面格式填写(我将在之后的博客中讲解实现) 0是电脑自带摄像

    2024年02月05日
    浏览(59)
  • 使用YOLOv5实现单摄像头实时目标检测

    我将在上一节的基础上,一步一步展示如何实现单摄像头实时目标检测,其中包括我在配置过程中遇到的报错和解决方法。 将\\\'--source\\\'的默认值改为0 这里的\\\'0\\\'是指系统默认的第一个摄像头,通常是电脑自带的摄像头,所以一定要记得把摄像头打开再运行代码(有些电脑会有摄

    2024年02月03日
    浏览(67)
  • YOLOv7调用摄像头检测报错解决

    yolov7detect.py文件调用本地摄像头,把source参数设为0 报错:cv2.error: OpenCV(3.4.2) 一堆地址:The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script in function \\\'cvShowImage\\\' 我原本的环境

    2024年01月22日
    浏览(46)
  • windows平台使用CMake工具对darknet的编译以及安装过程+yolov3+图像检测+摄像头检测+视频检测+手机作为摄像头进行检测(详解)

    目录 1.编译和安装教程 (1)安装visual studio 2022 (2)CMake下载及安装 (3)下载darknet.zip文件 (4)安装OpenCV  (5)修改Makefile文件 (6)修改CMakeLists.txt文件 (7)使用CMake工具 2.yolov3进行测试 (1)单张图像进行检测  (2)开启摄像头进行检测 (3) 视频检测 (4)使用手机摄

    2024年02月05日
    浏览(75)
  • 【学习笔记】Yolov5调用手机摄像头实时检测(环境配置+实现步骤)

    我们需要首先从GitHub获取到yolov5的源码,直达链接如下: https://github.com/ultralytics/yolov5 打开后按照如下步骤下载源码压缩包即可 权重文件下载地址:https://download.csdn.net/download/liujiahao123987/87400892 注:我用的iOS,安卓版本没有\\\"Lite\\\" 需要的就是这个局域网,每个人的都不一样 需

    2023年04月25日
    浏览(53)
  • c++读取yolov5模型进行目标检测(读取摄像头实时监测)

    文章介绍 本文是篇基于yolov5模型的一个工程,主要是利用c++将yolov5模型进行调用并测试,从而实现目标检测任务 任务过程中主要重点有两个,第一 版本问题,第二配置问题 一,所需软件及版本       训练部分 pytorch==1.13.0  opencv==3.4.1   其他的直接pip即可       c++部署 

    2024年02月07日
    浏览(45)
  • 在yolov5的detect中我该如何调用第三方摄像头?

    要在 YOLOv5 的 detect 中调用第三方摄像头,你可以使用 OpenCV 库中的 VideoCapture 类来读取摄像头的视频流。 你可以这样做: 首先,安装 OpenCV 库。 然后,在你的代码中包含以下头文件: 接下来,创建一个 VideoCapture 对象,用于获取摄像头的视频流: 然后,打开摄像头,并检查

    2024年02月12日
    浏览(47)
  • Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头

    程序示例精选 Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头 如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助! 这篇博客针对《Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头》编写代码,代码整洁,规则,易读。 学习与应

    2024年02月03日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包