基于Swin Transformers的乳腺癌组织病理学图像多分类

这篇具有很好参考价值的文章主要介绍了基于Swin Transformers的乳腺癌组织病理学图像多分类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

乳腺癌的非侵入性诊断程序涉及体检和成像技术,如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。

CNN表现出固有的归纳偏差,并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此,通常在训练CNN模型时应用图像增强。


Swin Transformer是视觉转换器的变体,基于非重叠移位窗口的概念,是一种用于各种视觉检测任务的成熟方法。

用于分类任务的VIT实现全局自我注意力,其中计算图像补丁和所有其他补丁之间的关联。这种全局量化导致了关于补丁数量的二次计算复杂性,使得它不太适合处理高分辨率图像。Swin Transformer工作在移位的窗口上,可以提供可变的图像补丁分辨率。

为了高效建模,提出并计算局部窗口内的自注意力,并且以不重叠的方式排列窗口以均匀划分图像。基于窗口的自注意力具有线性复杂性和可扩展性。基于窗口的自注意力的建模能力是有限的,因为它缺乏跨窗口的连接。因此,提出了一种移位窗口分区方法,在连续旋转变压器块的分区配置之间交替进行,以允许跨窗口连接,同时保持非重叠窗口的高效计算。

基于乳房x光检查

在从特定感兴趣区域(ROI)进行分类时,从乳房X光片中考虑的典型特征是肿块大小、ROI的不规则形状、ROI边界的均匀性和组织密度。将这些手工制作的特征输入到支持向量机、k近邻、逻辑回归、二叉决策树和人工神经网络等分类器中进行分类。

基于超声图像检查

超声检查也是非侵入性的,基于机器学习的方法包括基于感兴趣区域的放射性特征,用于使用各种机器学习分类器进行分类。使用希尔伯特变换标记控制分水岭变换提取形状和纹理特征,并将其进一步馈送到KNN分类器和集成决策树模型。

基于组织病理学图像

非侵入性成像程序可能无法识别癌症区域及其亚型。为了弥补这一缺陷,活检被用于更多样化地研究乳腺组织中的恶性肿瘤。活检包括收集样本并在显微镜载玻片上对组织进行染色,以便更好地观察细胞质和细胞核。

BreakHis数据集

BreaKHis数据集由82例患者的乳腺肿瘤手术活检获得的7909张显微RGB图像组成,放大倍率分别为50倍、100倍、200倍和400倍。数据包括良性和恶性亚型。此外,良性癌症亚型包括纤维腺瘤、管状腺瘤、叶状瘤和腺病,而恶性亚型包括导管癌、乳头状癌、小叶癌和粘液性癌。

基于Swin Transformers的乳腺癌组织病理学图像多分类,医学图像处理,分类,数据挖掘,人工智能

 Swin Transformer

准备工作

  1. 将700*640的原始图像分辨率调整为224*224
  2. 将输入尺寸为的RGB图像将原始的起始补丁大小分割成大小为4*4的小补丁
  3. 每个图象补丁的尺寸为
  4. 在大小为48的原始特征张量上应用线性嵌入层,将其投影到特征维度C上

体系结构

  1.  将尺寸为C的补丁线性嵌入上应用几个具有自注意力的Swin Transformer块,保证tokens的数量为,线性嵌入层与Swin Transformer一起构成Swin Transformer体系结构的第一阶段。
  2. 为了便于分层表示,从Swin Transformer Block架构的第二阶段开始,通过补丁合并层来降低补丁的数量。第二阶段的补丁合并层将每组2*2相邻补丁的特征进行拼接,并在4C维拼接特征上应用线性层。这样可以将补丁的数量减少了4倍,并且将线性层的输出维度为2C,第二阶段的输出补丁数保持在,
  3. 这样的过程重复两次,构成阶段3和阶段4.导致其输出分辨率分别为和

基于Swin Transformers的乳腺癌组织病理学图像多分类,医学图像处理,分类,数据挖掘,人工智能

 基于Swin Transformers的乳腺癌组织病理学图像多分类,医学图像处理,分类,数据挖掘,人工智能

基于Swin Transformers的乳腺癌组织病理学图像多分类,医学图像处理,分类,数据挖掘,人工智能

基于Swin Transformers的乳腺癌组织病理学图像多分类,医学图像处理,分类,数据挖掘,人工智能

基于Swin Transformers的乳腺癌组织病理学图像多分类,医学图像处理,分类,数据挖掘,人工智能

模型交叉验证和测试

原始数据集中图像的强度值在0 ~ 255之间,将这些强度缩放为−1和1之间的值。当包含所有缩放因子的图像时,数据集被分为62:8:30分别用于训练、验证和测试。当从特定缩放因子的图像中实现分类时,遵循72:8:20的分割。通过经验选择Swin Transformer的超参数,并使用验证集来确保模型不会过拟合。文章来源地址https://www.toymoban.com/news/detail-847877.html

到了这里,关于基于Swin Transformers的乳腺癌组织病理学图像多分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文献学习-27-基于连通性感知图Transformer的数字病理图像乳腺癌分类

    Breast Cancer Classification from Digital  Pathology Images via Connectivity-aware GraphTransformer Authors:  Kang Wang, Feiyang Zheng, Lan Cheng, Hong-Ning Dai, Qi Dou, Jing Qin,  Member, IEEE Source: I EEE TRANSACTIONS ON MEDICAL IMAGING (TMI) Keywords:  Tissue connectivity, Tissue topology phe notyping, Graph Transformer, Cancer classification, Entity

    2024年04月12日
    浏览(61)
  • 基于深度学习的乳腺癌淋巴结转移预测模型(E-Transformer)

    乳腺癌细胞淋巴结转移是界定乳腺癌早中期的重要标准 ,需要活检,患者体验较差。 传统的图像辅助诊断需要手动提取特征、组合图像特征,效率低下、效果不佳。新兴的基于深度学习的图像辅助诊断,利用卷积神经网络通过全连接层或机器学习自动分割病灶、提取图像特

    2024年04月17日
    浏览(43)
  • A.机器学习入门算法(八):基于BP神经网络的乳腺癌的分类预测

    【机器学习入门与实践】入门必看系列,含数据挖掘项目实战:数据融合、特征优化、特征降维、探索性分析等,实战带你掌握机器学习数据挖掘 专栏详细介绍:【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战:数据融合、特征优化、特征降维、探索性分析

    2024年02月02日
    浏览(52)
  • 计算机竞赛 深度学习乳腺癌分类

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习乳腺癌分类 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgradu

    2024年02月07日
    浏览(47)
  • 计算机设计大赛 深度学习乳腺癌分类

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习乳腺癌分类 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgradu

    2024年02月19日
    浏览(62)
  • 分类4:机器学习处理乳腺癌数据集代码

    乳腺癌数据属于二分类问题,包含569条样本,31个特征,1个标签维度。 如果有需要,可以联系:https://docs.qq.com/doc/DWEtRempVZ1NSZHdQ 4.2.1 显示相关系数,并可视化 4.2.2 显示每个类别的数量 没有空值,不用对空值进行处理 数据集整体数量:569 训练集集整体数量:398 测试集整体数

    2024年02月08日
    浏览(42)
  • 基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

    《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌ 更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍 感谢小伙伴们点赞、关注! 《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】

    2024年04月13日
    浏览(79)
  • 【PyTorch】第六节:乳腺癌的预测(二分类问题)

    作者 🕵️‍♂️:让机器理解语言か 专栏 🎇:PyTorch 描述 🎨:PyTorch 是一个基于 Torch 的 Python 开源机器学习库。 寄语 💓:🐾没有白走的路,每一步都算数!🐾          上一个实验我们讲解了线性问题的求解步骤,本实验我们以乳腺癌的预测为实例,详细的阐述如

    2023年04月16日
    浏览(49)
  • 机器学习赋能乳腺癌预测:如何使用贝叶斯分级进行精确诊断?

    乳腺癌是女性最常见的恶性肿瘤之一,也会发生在男性身上。每年全球有数百万人被诊断出乳腺癌,对患者的生活和健康造成了巨大的影响。早期的乳腺癌检测和准确的诊断对于提高治疗的成功率至关重要。然而,乳腺癌的早期诊断面临着许多挑战,如复杂的病理学评估和误

    2024年02月12日
    浏览(46)
  • “维度削减+逻辑回归”:如何使用PCA大幅提升乳腺癌的预测成功率?

    乳腺癌是女性中最常见的恶性肿瘤之一,也影响着全球范围内许多人们的健康。据世界卫生组织(WHO)的数据,乳腺癌是全球癌症发病率和死亡率最高的肿瘤之一,其对个体和社会的危害不可忽视。因此,早期乳腺癌的预测和诊断变得至关重要,以便及早采取适当的治疗措施

    2024年02月12日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包