基于Socket简单的UDP网络程序

这篇具有很好参考价值的文章主要介绍了基于Socket简单的UDP网络程序。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

小白苦学IT的博客主页

初学者必看:Linux操作系统入门

代码仓库:Linux代码仓库

❤关注我一起讨论和学习Linux系统

1.前言

网络编程前言

网络编程是连接数字世界的桥梁,它让计算机之间能够交流信息,为我们的生活和工作带来便利。从简单的网页浏览到复杂的分布式系统,网络编程无处不在。

然而,网络编程涉及诸多复杂概念和技术,如IP地址、端口号、Socket、TCP/UDP协议等,需要我们深入学习和掌握。同时,网络环境的复杂性、数据安全性等问题也带来了挑战。

但正是这些挑战,让网络编程充满了无限可能。掌握网络编程技术,我们可以开发出各种创新应用,为人们提供更高效、智能的服务。

本文旨在介绍网络编程的Socket编程接口及其技术,分享实用经验,帮助读者打下坚实的网络编程基础。

1.socket编程接口

socket常见API

// 创建 socket 文件描述符 (TCP/UDP, 客户端 + 服务器)
int socket(int domain, int type, int protocol);
// 绑定端口号 (TCP/UDP, 服务器)
int bind(int socket, const struct sockaddr *address,socklen_t address_len);
// 开始监听socket (TCP, 服务器)
int listen(int socket, int backlog);
// 接收请求 (TCP, 服务器)
int accept(int socket, struct sockaddr* address,socklen_t* address_len);
// 建立连接 (TCP, 客户端)
int connect(int sockfd, const struct sockaddr *addr,socklen_t addrlen);

sockaddr结构

socket API是一层抽象的网络编程接口,适用于各种底层网络协议,如IPv4、IPv6,以及后面要谈的UNIX DomainSocket. 然而, 各种网络协议的地址格式并不相同.

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

  • IPv4和IPv6的地址格式定义在netinet/in.h中,IPv4地址用sockaddr_in结构体表示,包括16位地址类型, 16位端口号和32位IP地址。
  • IPv4、IPv6地址类型分别定义为常数AF_INET、AF_INET6. 这样,只要取得某种sockaddr结构体的首地址,不需要知道具体是哪种类型的sockaddr结构体,就可以根据地址类型字段确定结构体中的内容。
  • socket API可以都用struct sockaddr *类型表示, 在使用的时候需要强制转化成sockaddr_in; 这样的好处是程序的通用性, 可以接收IPv4, IPv6, 以及UNIX Domain Socket各种类型的sockaddr结构体指针做为参数。

sockaddr 结构 

sockaddr 是一个通用的套接字地址结构,它用于表示各种类型的套接字地址。但是,sockaddr 结构本身并不包含足够的信息来确定地址的类型,因此它通常被更具体的结构(如 sockaddr_in)所替代。sockaddr 结构的主要作用是为不同的地址结构提供一个统一的接口。

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

  • 通用性sockaddr是一个通用的套接字地址结构,设计初衷是为了能够表示各种类型的套接字地址,包括IPv4、IPv6以及其他可能的地址类型。这种通用性使得sockaddr能够作为许多网络编程函数的参数,如bindconnectrecvfromsendto等,用于指明地址信息。
  • 扩展性:通过定义sa_family字段,sockaddr能够区分不同类型的地址结构。这使得在未来引入新的地址类型时,不需要修改现有函数的接口,只需定义新的地址结构并设置相应的sa_family即可。

sockaddr_in 结构

sockaddr_in 是 sockaddr 结构的一个特例,用于表示 IPv4 地址和端口号。它包含了 IP 地址和端口号的信息,以及地址族和协议信息。

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

  • IPv4特化:尽管sockaddr具有通用性,但在实际编程中,特别是在处理IPv4地址时,直接使用sockaddr结构会显得过于复杂和冗余。sockaddr_in结构是针对IPv4地址设计的,它包含了IPv4地址和端口号等必要信息,并且以更直观和易于操作的方式呈现这些信息。
  • 便利性sockaddr_in提供了专门的字段来存储IPv4地址(sin_addr)和端口号(sin_port),这使得在处理IPv4网络编程任务时更加方便和高效。同时,通过类型转换,sockaddr_in结构可以很容易地转换为sockaddr结构,从而与需要sockaddr参数的函数兼容。

in_addr结构 

in_addr 结构用于表示一个 IPv4 地址。它通常与 sockaddr_in 结构一起使用,作为 sin_addr 字段的类型。

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

在这个结构中,s_addr 是一个无符号长整数,表示 IPv4 地址。在实际使用中,我们通常不会直接操作这个长整数,而是使用诸如 inet_pton 和 inet_ntop 这样的函数来将点分十进制格式的 IP 地址(如 "192.168.1.1")转换为 in_addr 结构,或者将 in_addr 结构转换为点分十进制格式的字符串。 

  • IPv4地址表示in_addr结构专门用于表示IPv4地址。它通过一个无符号长整数(s_addr)来存储IPv4地址,这种表示方式在网络编程中非常常见。尽管IPv4地址通常以点分十进制的形式表示(如192.168.1.1),但在内部处理和网络传输时,它们通常被转换为这种整数形式。
  • 转换方便in_addr结构使得在点分十进制格式和内部整数格式之间转换IPv4地址变得相对简单。通过调用如inet_ptoninet_ntop这样的函数,可以轻松实现这两种格式之间的转换,从而方便网络编程中的地址处理。

总结一下就是:

  • sockaddr 是一个通用的套接字地址结构,用于表示各种类型的地址。
  • sockaddr_in 是 sockaddr 的一个特例,用于表示 IPv4 地址和端口号。
  • in_addr 用于表示 IPv4 地址。

这三种结构的存在是为了满足不同网络编程需求和提高编程效率。sockaddr提供了通用性和扩展性,sockaddr_in则针对IPv4地址提供了更直观和便利的操作方式,而in_addr则专门用于表示和转换IPv4地址。在实际编程中,根据具体需求选择合适的结构进行处理,可以提高代码的可读性和可维护性。

2.简单UDP的echo服务器(代码实现)

封装 UdpSocket

UdpServer.hpp

默认ip用 0.0.0.0

端口:8080

对udp服务器进行封装:

#pragma once
#include "Log.hpp"
#include <string>
#include <strings.h>
#include <cstring>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include<errno.h>
#include<functional>

using func_t = std::function<std::string (const std::string&,uint16_t &,const std::string&)>;

uint16_t defaultport = 8080;
std::string defaultip = "0.0.0.0";
const int size = 1024;

enum
{
    SOCKET_ERR = 1,
    BIND_ERR

};

class UdpServer
{
public:
    UdpServer(const uint16_t &port = defaultport, const std::string &ip = defaultip)
        :_sockfd(-1), _port(port), _ip(ip),_isrunning(false)
    {
    }
    void Init()
    {
        //1.创建udp socket
        _sockfd = socket(AF_INET, SOCK_DGRAM, 0);
        if (_sockfd < 0)
        {
            log.LogMessage(FATAL, "socket create error,_sockfd: %d", _sockfd);
            exit(SOCKET_ERR);
        }
        log.LogMessage(INFO, "socket create success, _sockfd: %d ", _sockfd);

        //2.bind socket
        struct sockaddr_in local;
        bzero(&local,sizeof(local));
        local.sin_family = AF_INET;
        local.sin_port = htons(_port);//需要保证我的端口号是网络字节序列,因为该端口号是要给对方发送的。
        local.sin_addr.s_addr = inet_addr(_ip.c_str()); //1.string->uint32_t 2.uint32_t 必须是网络序列的
        //local.sin_addr.s_addr = htonl(INADDR_ANY);

        if(bind(_sockfd,(const struct sockaddr *)&local,sizeof(local))<0)
        {
            log.LogMessage(FATAL,"bind error , error: %d, error string : %s",errno,strerror(errno));
            exit(BIND_ERR);
        }
            log.LogMessage(INFO,"bind success , error: %d, error string : %s",errno,strerror(errno));

    }

    void Run(func_t func)
    {
        _isrunning = true;
        char inbuffer[size];
        while(_isrunning)
        {
            struct sockaddr_in client;
            socklen_t len = sizeof(client);
            std::cout<<"server is run!!!"<<std::endl;
            ssize_t n = recvfrom(_sockfd,inbuffer,sizeof(inbuffer) - 1,0,(struct sockaddr *)&client,&len);
            if(n<0)
            {
                log.LogMessage(WARNING,"recvfrom error, errno: %d ,errno string : %s",errno,strerror(errno));
                continue;
            }

            uint16_t clientport = ntohs(client.sin_port);
            std::string clientip = inet_ntoa(client.sin_addr);

            inbuffer[n] = 0;
            //充当了一次数据的处理
            std::string info = inbuffer;
            std::string echo_string = func(info,clientport,clientip);

            sendto(_sockfd,echo_string.c_str(),echo_string.size(),0,(struct sockaddr*)&client,len);

        }
    }

    ~UdpServer() 
    {
        if(_sockfd>0) close(_sockfd);
    }

private:
    int _sockfd;//网络文件描述符
    std::string _ip;//字符串类型ip地址
    uint16_t _port;//服务器进程的端口号   
    bool _isrunning;
};

Main.cc

#include"UdpServer.hpp"
#include<memory>
#include<iostream>
#include<cstdio>
#include<vector>

void Usage(std::string proc)
{
    std::cout<<"\n\rUsage: "<<proc<<" port[1024+]\n"<<std::endl;
}

std::string Handler(const std::string& str,uint16_t & clientport,const std::string& clientip)
{
    std::cout<<"[ ip: "<< clientip<<" port: "<<clientport<<" ]# ";
    std::string res = "server get a message: ";
    res+=str;
    std::cout<<res<<std::endl;
    return res;
}

bool SafeCheck(const std::string & cmd)
{
    std::vector<std::string> key_word = 
    {
        "rm",
        "mv",
        "cp",
        "kill",
        "sudo",
        "unlink",
        "uninstall",
        "yum",
        "top"
    };

    for(auto &word:key_word)
    {
        auto pos = cmd.find(word);
        if(pos!=std::string::npos) return false;
    }

    return true;
}

std::string ExcuteCommand(const std::string & cmd)
{
    if(!SafeCheck(cmd)) return "bad man";
    FILE* fp = popen(cmd.c_str(),"r");
    if(nullptr == fp)
    {
        perror("popen error");
        return "error";
    }

    std::string result;
    char buffer[4096];
    while(true)
    {
        char * getc = fgets(buffer,sizeof(buffer),fp);
        if(nullptr == getc)
        {
            break;
        }
        result+=buffer;
    }
    pclose(fp);
    return result;

}


int main(int argc,char* argv[])
{
    if(argc!=2)
    {
        Usage(argv[0]);
        exit(1);
    }

    uint16_t port = std::stoi(argv[1]);

    std::unique_ptr<UdpServer> svr(new UdpServer(port));
    svr->Init();
    svr->Run(Handler);    
    return 0;
}

UdpClient.cc(客户端代码)

#include <iostream>
#include <cstdlib>
#include <unistd.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

using namespace std;

void Usage(std::string proc)
{
    std::cout << "\n\rUsage: " << proc << " serverip serverport\n"
              << std::endl;
}

// ./udpclient serverip serverport
int main(int argc, char *argv[])
{
    if (argc != 3)
    {
        Usage(argv[0]);
        exit(0);
    }
    std::string serverip = argv[1];
    uint16_t serverport = std::stoi(argv[2]);

    struct sockaddr_in server;
    bzero(&server, sizeof(server));
    server.sin_family = AF_INET;
    server.sin_port = htons(serverport); //?
    server.sin_addr.s_addr = inet_addr(serverip.c_str());
    socklen_t len = sizeof(server);

    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0)
    {
        cout << "socker error" << endl;
        return 1;
    }

    // client 要bind吗?要!只不过不需要用户显示的bind!一般有OS自由随机选择!
    // 一个端口号只能被一个进程bind,对server是如此,对于client,也是如此!
    // 其实client的port是多少,其实不重要,只要能保证主机上的唯一性就可以!
    // 系统什么时候给我bind呢?首次发送数据的时候

    string message;
    char buffer[1024];
    while (true)
    {
        cout << "Please Enter@ ";
        getline(cin, message);
        cout<<message<<endl;

        // std::cout << message << std::endl;
        // 1. 数据 2. 给谁发
        sendto(sockfd, message.c_str(), message.size(), 0, (const sockaddr *)&server, len);
        
        struct sockaddr_in temp;
        socklen_t len = sizeof(temp);

        ssize_t s = recvfrom(sockfd, buffer, 1023, 0, (struct sockaddr*)&temp, &len);
        if(s > 0)           
        {
            buffer[s] = 0;
            cout << buffer << endl;
        }
    }

    close(sockfd);
    return 0;
}

日志类:

#pragma once

#include <iostream>
#include <cstdarg>
#include <ctime>
#include <string>
#include <unistd.h>
#include <fstream>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

enum
{
    DEBUG = 0,
    INFO,
    WARNING,
    ERROR,
    FATAL
};

enum
{
    Screen = 10,
    Onefile,
    Classfile
};

std::string LevelToString(int level)
{
    switch (level)
    {
    case DEBUG:
        return "Debug";
    case INFO:
        return "Info";

    case WARNING:
        return "Warning";
    case ERROR:
        return "Error";
    case FATAL:
        return "Fatal";
    default:
        return "Unknown";
    }
}

const int defaultstyle = Screen;
const std::string default_filename = "log.";
const std::string logdir="log";

class Log
{
public:
    Log():style(defaultstyle),filename(default_filename)
    {
        mkdir(logdir.c_str(),0775);
    }

    void Enable(int sty)
    {
        style = sty;
    }

    std::string TimestampToLocalTime()
    {
        time_t curr = time(nullptr);
        struct tm *currtime = localtime(&curr);
        char time_buffer[128];
        snprintf(time_buffer, sizeof(time_buffer), "%d-%d-%d %d:%d:%d",
                 currtime->tm_year + 1900, currtime->tm_mon, currtime->tm_mday, currtime->tm_hour,
                 currtime->tm_min, currtime->tm_sec);

        return time_buffer;
    }

    void WriteLog(const std::string &levelstr, const std::string &message)
    {
        switch (style)
        {
        case Screen:
            std::cout << message<<std::endl;
            break;
        case Onefile:
            WriteLogToOnefile("all", message);
            break;
        case Classfile:
            WriteLogToClassfile(levelstr, message);
            break;
        default:
            break;
        }
    }

    void WriteLogToOnefile(const std::string &logname, const std::string &message)
    {
        umask(0);
        int fd = open(logname.c_str(),O_CREAT | O_WRONLY | O_APPEND,0666);
        if(fd<0)return;
        write(fd,message.c_str(),message.size());
        close(fd);
        // std::ofstream out(logname);
        // if (!out.is_open())
        //     return;
        // out.write(message.c_str(), message.size());
        // out.close();
    }

    void WriteLogToClassfile(const std::string &levelstr, const std::string &message)
    {
        std::string logname = logdir;
        logname+="/";
        logname+=filename;
        logname += levelstr;
        WriteLogToOnefile(logname, message);
    }

    void LogMessage(int level, const char *format, ...) // 类c的日志接口
    {
        char rightbuffer[1024];
        va_list args;
        va_start(args, format);
        vsnprintf(rightbuffer, sizeof(rightbuffer), format, args);
        va_end(args);

        char leftbuffer[1024];
        std::string curtime = TimestampToLocalTime();
        std::string levelstr = LevelToString(level);
        std::string idstr = std::to_string(getpid());
        snprintf(leftbuffer, sizeof(leftbuffer), "[%s][%s][%s]",
                 levelstr.c_str(), curtime.c_str(), idstr.c_str());

        std::string logInfo = leftbuffer;
        logInfo += rightbuffer;

        WriteLog(levelstr, logInfo);
    }
    ~Log() {}

private:
    int style;
    std::string filename;
};


Log log;

class Conf
{
public:
    Conf()
    {
        log.Enable(Screen);
    }
    ~Conf(){}
};

Conf conf;

Makefile

.PHONY:all
all:udpserver udpclient

udpserver:Main.cc
	g++ -o $@ $^ -g -std=c++11
udpclient:UdpClient.cc
	g++ -o $@ $^ -g -std=c++11

.PHONY:clean
clean:
	rm -rf udpserver udpclient

运行结果:

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

实现了客户端,服务端双方交互,当然我们这只是简单的进行数据处理,其实还可以通过实现其他功能,这里可以发挥自己的想象去写。

地址转换函数

这里只介绍基于IPv4的socket网络编程,sockaddr_in中的成员struct in_addr sin_addr表示32位 的IP 地址,但是我们通常用点分十进制的字符串表示IP 地址,以下函数可以在字符串表示 和in_addr表示之间转换;

字符串转in_addr的函数:

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

in_addr转字符串的函数:

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

其中inet_pton和inet_ntop不仅可以转换IPv4的in_addr,还可以转换IPv6的in6_addr,因此函数接口是void*addrptr。

关于inet_ntoa

inet_ntoa这个函数返回了一个char*, 很显然是这个函数自己在内部为我们申请了一块内存来保存ip的结果. 那么是否需要调用者手动释放呢?

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

man手册上说, inet_ntoa函数, 是把这个返回结果放到了静态存储区. 这个时候不需要我们手动进行释放.

那么问题来了, 如果我们调用多次这个函数, 会有什么样的效果呢? 参见如下代码:

#include<stdio.h>
#include<netinet/in.h>
#include<arpa/inet.h>

int main()
{
    struct sockaddr_in addr1;
    struct sockaddr_in addr2;
    addr1.sin_addr.s_addr=0;
    addr2.sin_addr.s_addr=0xffffffff;
    char* ptr1 = inet_ntoa(addr1.sin_addr);
    char* ptr2 = inet_ntoa(addr2.sin_addr);
    printf("ptr1: %s,ptr2: %s\n",ptr1,ptr2);
    return 0;
}

运行结果:

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

因为inet_ntoa把结果放到自己内部的一个静态存储区, 这样第二次调用时的结果会覆盖掉上一次的结果

  • 如果有多个线程调用 inet_ntoa, 是否会出现异常情况呢?
  • 在APUE中, 明确提出inet_ntoa不是线程安全的函数;
  • 但是在centos7上测试, 并没有出现问题, 可能内部的实现加了互斥锁;
  • 在多线程环境下, 推荐使用inet_ntop, 这个函数由调用者提供一个缓冲区保存结果, 可以规避线程安全问题;

如果测试如下代码:

#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <pthread.h>
void *Func1(void *p)
{
    struct sockaddr_in *addr = (struct sockaddr_in *)p;
    while (1)
    {
        char *ptr = inet_ntoa(addr->sin_addr);
        printf("addr1: %s\n", ptr);
    }
    return NULL;
}
void *Func2(void *p)
{
    struct sockaddr_in *addr = (struct sockaddr_in *)p;
    while (1)
    {
        char *ptr = inet_ntoa(addr->sin_addr);
        printf("addr2: %s\n", ptr);
    }
    return NULL;
}
int main()
{
    pthread_t tid1 = 0;
    struct sockaddr_in addr1;
    struct sockaddr_in addr2;
    addr1.sin_addr.s_addr = 0;
    addr2.sin_addr.s_addr = 0xffffffff;
    pthread_create(&tid1, NULL, Func1, &addr1);
    pthread_t tid2 = 0;
    pthread_create(&tid2, NULL, Func2, &addr2);
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    return 0;
}

运行结果:

基于Socket简单的UDP网络程序,初学者必看:Linux操作系统入门,网络,udp,tcp/ip,linux,服务器,vscode,c++

这段代码试图创建两个线程,Func1 和 Func2,它们分别无限循环地打印两个 sockaddr_in 结构的 IP 地址。这两个 sockaddr_in 结构,addr1 和 addr2,被初始化为具有特定的 sin_addr.s_addr 值。

addr1.sin_addr.s_addr 被初始化为 0,这在 IPv4 地址中通常表示一个未指定的地址,或者说是无效的地址。

addr2.sin_addr.s_addr 被初始化为 0xffffffff,这在 IPv4 地址中通常表示广播地址。

然而,代码中有一些需要注意的地方:

  1. inet_ntoa的静态缓冲区inet_ntoa 函数使用静态缓冲区来存储转换后的字符串。这意味着如果两个线程同时调用 inet_ntoa,它们可能会覆盖彼此的缓冲区,导致不可预测的结果。因此,在多线程环境中使用 inet_ntoa 是不安全的。
  2. 无限循环:两个线程都包含一个无限循环,这会导致程序永远不会退出,除非被外部因素(如用户终止)中断。
  3. pthread_join:虽然代码中包含了 pthread_join 调用,但由于线程中的无限循环,这些调用实际上永远不会返回,因此 main 函数也永远不会结束。

测试这段代码时,你会看到两个线程分别不停地打印出相同的 IP 地址字符串,但由于 inet_ntoa 的问题,这些字符串可能会被互相覆盖,导致输出变得混乱。

此外,具体的输出取决于操作系统的具体实现和线程调度的行为。在某些情况下,你可能会看到 addr1 和 addr2 交替出现,而在其他情况下,你可能会看到某个地址连续出现多次,然后被另一个地址覆盖。

总的来说,这段代码并不是一个好的示例,因为它在多线程环境中不正确地使用了 inet_ntoa,并且包含了无限循环,这会导致程序行为不可预测且难以管理。

如果你需要在多线程环境中处理 IP 地址,建议使用更安全的函数,如 inet_ntop,并确保正确管理线程的生命周期和同步。文章来源地址https://www.toymoban.com/news/detail-848539.html

到了这里,关于基于Socket简单的UDP网络程序的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SEO 分步教程:初学者掌握的 8 个简单基础知识

    如果您刚刚开始使用搜索引擎优化 (SEO),那么分步 SEO 教程是有序的。在这一点上,你可能已经听说过一些基本术语,如研究和页面优化。但是,您如何应用迄今为止收集的所有知识呢? 如果您刚刚开始使用搜索引擎优化 (SEO),那么分步 SEO 教程是有序的。在这一

    2024年01月17日
    浏览(64)
  • QT基础:遍历QListWidget,及QListWidget简单演示,适合初学者食用

    QListWidget 是一个列表框,关于它的详细介绍可以参考:Qt QListWidget详解 初学者如果只是想在短时间内了解 QListWidget 的话,可以参考这里 1、打开QT,创建一个 widget 项目,在UI中加入 QListWidget 和一个 PushButton(等会备用) 可以双击 QListWidget 小部件 , 点左下角的 + 可以在里

    2024年02月12日
    浏览(49)
  • 【Linux网络】网络编程套接字 -- 基于socket实现一个简单UDP网络程序

    我们把数据从A主机发送到B主机,是目的吗?不是,真正通信的不是这两个机器!其实是这两台机器上面的软件(人) 数据有 IP(公网) 标识一台唯一的主机 ,用谁来标识各自主机上客户或者服务进程的唯一性呢? 为了更好的表示一台主机上服务进程的唯一性,我们采用 端口号

    2024年02月12日
    浏览(159)
  • 自学黑客(网络安全)有哪些技巧——初学者篇

    很多人说,要想学好黑客技术,首先你得 真正热爱它 。 热爱,听着多么让人激情澎湃,甚至热泪盈眶。 但很可惜,“热爱”这个词对还没入门的小白完全不管用 。 如果一个人还没了解过你就说爱你,不是骗财就是骗色。 如果一个技术小白连信息安全是个什么都没弄清楚,

    2024年02月09日
    浏览(40)
  • 初学者需看:微信小程序制作步骤

    微信小程序已成为移动应用开发的重要形式之一。它为用户提供了便捷的服务,也为开发者提供了简单的工具,使他们能够轻松地构建功能丰富的应用程序。本文将通过一个案例来介绍微信小程序的制作步骤,让初学者能够了解如何制作微信小程序。 案例:一个简单的公司展

    2024年02月01日
    浏览(81)
  • 手把手教python打包exe,打包一个简易的小程序。tkinter,python初学者。编程初学者作业:用*填充出自己的名字

    【声明】这篇文章可能写的很差,作者技术不够。但是一定原创,一定用最简单的语言,最详细的描述让没有经验的读者能够懂得 【首言】exe是电脑上直接点击就可以使用的。当你写了一个.py文件,可以实现你的有趣功能,于是你高兴的把这个发送给你的朋友,但是你的朋友

    2024年02月01日
    浏览(52)
  • LangChain入门:构建LLM驱动的应用程序的初学者指南

    LangChain DemoGPT         你有没有想过如何使用大型语言模型(LLM)构建强大的应用程序?或者,也许您正在寻找一种简化的方式来开发这些应用程序?那么你来对地方了!本指南将向您介绍LangChain,这是一个简化构建LLM驱动的应用程序的过程的工具。我们还将深入研究 

    2024年02月12日
    浏览(42)
  • VASP新手入门,对于VASP以及Linux系统初学者的福音~(附VASP简单结构优化的详细过程)

       其实好多朋友们对于突然被丢过来一个课题,去学习VASP是完全没有概念的,例如什么是VASP?VASP是一个什么样的软件?(好多的同学们在找我帮忙编译安装过VASP之后最有趣的一句话是“您好!请问VASP这个软件在哪里,我为什么找不到!”)如何使用VASP?用VASP到底去计算什

    2024年02月09日
    浏览(53)
  • 一篇文章彻底了解网络字节序和主机字节序,初学者进来,不走弯路

    目录 1.什么是字节序? 2.大端字节序和小端字节序 3.主机字节序和网络字节序 4.不同类型数据传输处理流程对比 5.设计一个小程序来判断当前机器的字节序? 6.大小端转换方法? 字节序,字节在内存中排列顺序 计算机存储数据方式是从内存增长方向存储 图 1 计算机存储方式 网

    2024年02月03日
    浏览(49)
  • 爬虫,初学者指南

    1.想目标地址发起请求,携带heards和不携带heards的区别 request模块用于测速发送数据的连通性,通过回复可以看出418,Connection:close表示未获取到服务器的返回值,需要添加heards信息,此服务器拒绝非浏览器发送的请求。 上图可以看出添加了头信息headers之后成功获取了返回值

    2024年02月07日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包