【C++练级之路】【Lv.20】位图和布隆过滤器(揭开大数据背后的神秘面纱)

这篇具有很好参考价值的文章主要介绍了【C++练级之路】【Lv.20】位图和布隆过滤器(揭开大数据背后的神秘面纱)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


【C++练级之路】【Lv.20】位图和布隆过滤器(揭开大数据背后的神秘面纱),进击的C++,数据结构世界,c++,开发语言,数据结构,哈希算法,hash-index

快乐的流畅:个人主页
个人专栏:《算法神殿》《数据结构世界》《进击的C++》
远方有一堆篝火,在为久候之人燃烧!

引言

哈希映射的思想,在实际中有许多运用,之前介绍的哈希表是一种经典的应用场景,而今天我们将了解其他的哈希数据结构——位图和布隆过滤器,它们在面对海量数据的场景时,有着得天独厚的优势。

一、位图

1.1 位图的概念

位图(bitset),主要用于存储和管理数据的状态。它通过使用位(bit)来表示数据的存在与否,每个位只能存储0或1,分别代表数据不存在和存在。

【C++练级之路】【Lv.20】位图和布隆过滤器(揭开大数据背后的神秘面纱),进击的C++,数据结构世界,c++,开发语言,数据结构,哈希算法,hash-index
位图原理:哈希直接定址法

1.2 位图的优势

先来看一道面试题:

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。【腾讯】

分析:

  1. 首先分析数据量大小,40亿整数 == 160亿byte,而1G约为10亿byte,所以大小约为16G
  2. 快速查找,我们想到哈希表,但是数据量太大,动态内存(最大约为4G)放不下

这时,就体现出位图的用处了!

如果将每个整数以比特位的形式存储表示,那么只需要40亿bit,约为0.5G。

所以,位图的主要优势为:

  • 查找速度快
  • 节省存储空间

1.3 位图的模拟实现

1.3.1 成员变量与默认成员函数

template<size_t N>
class bitset
{
public:
	bitset()
	{
		_bits.resize(N / 8 + 1);
	}
protected:
	vector<char> _bits;
	size_t _n = 0;//有效数据个数
};

细节:

  1. 非类型模板参数N,表示数据量(方便开辟足够空间)
  2. vector数据类型为char,方便进行位操作
  3. 构造函数提前开辟足够的空间(+1防止整除误差)

1.3.2 test

检测指定值是否存在

bool test(size_t x)
{
	size_t i = x / 8, j = x % 8;
	return _bits[i] & (1 << j);
}

细节:

  1. i 代表第几个char,j 代表char中的第几个bit
  2. <<代表从低位向高位移动

1.3.3 set

存入指定值,将对应的bit设置为1

void set(size_t x)
{
	size_t i = x / 8, j = x % 8;
	if (!test(x))
	{
		_bits[i] |= (1 << j);
		++_n;
	}
}

细节:

  • 如果检测该值不存在,则存入

1.3.4 reset

删除指定值,将对应的bit设置为0

void reset(size_t x)
{
	size_t i = x / 8, j = x % 8;
	if (test(x))
	{
		_bits[i] &= ~(1 << j);
		--_n;
	}
}

细节:

  • 如果检测该值存在,则删除

1.4 位图的缺陷

位图的最大缺陷,就是只能映射整型数据

同时,面对数据量小且特殊的情况时,位图所消耗的空间可能比哈希表大。

1.5 位图的应用场景

位图的一些典型应用场景包括:

  • 快速查找:检查某个数据是否在一个集合中。
  • 排序:在某些排序算法中,位图可以用来加速排序过程。
  • 求集合的交集、并集等:位图可以用来求解集合运算。
  • 操作系统中磁盘块的标记:在操作系统中,位图可以用来标记磁盘块的使用状态。

二、布隆过滤器

2.1 布隆过滤器的概念

布隆过滤器(Bloom Filter),是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构。其特点为查找元素时,只能为判断一定不存在或者可能存在

【C++练级之路】【Lv.20】位图和布隆过滤器(揭开大数据背后的神秘面纱),进击的C++,数据结构世界,c++,开发语言,数据结构,哈希算法,hash-index
布隆过滤器原理:哈希除留余数法

简单理解:布隆过滤器 = 位图 + 一系列哈希化函数

2.2 布隆过滤器的优势

前面讲到,位图只能映射整型,而布隆过滤器可以映射不同类型,其中运用最多的是string类。为什么可以映射不同类型呢?正是因为运用了哈希化函数,将不同类型转换为整型,映射在位图上。

当然,布隆过滤器最核心的思想,是通过增加哈希化函数,降低哈希冲突的概率。它不再是一 一映射的关系,而是将一个值映射到多个地址,从而降低了值与值之间冲突的概率。

所以,布隆过滤器比位图空间利用率更高,尤其在数据密度较低时。数据量很大时,布隆过滤器可以表示全集,其他数据结构不能。

2.3 布隆过滤器的模拟实现

2.3.1 成员变量

template<size_t N, 
	size_t X = 5,//关联系数
	class K = string,
	class Hash1 = BKDRHash,
	class Hash2 = APHash,
	class Hash3 = DJBHash>
class BloomFilter
{
public:
protected:
	bitset<N * X> _bs;
};

细节:

  1. 插入的数据量N和布隆过滤器长度之间,存在一个最佳系数X(根据公式计算,哈希化函数数量为3时,最佳系数为5)
  2. 布隆过滤器大部分场景处理string,所以这里默认给出string和相关哈希化函数
  3. 底层使用bitset,进行复用

想知道公式来源和推导,请移步这篇文章~

2.3.2 test

bool test(const K& key)
{
	size_t len = N * X;
	size_t i1 = Hash1()(key) % len;
	size_t i2 = Hash2()(key) % len;
	size_t i3 = Hash3()(key) % len;

	return _bs.test(i1) && _bs.test(i2) && _bs.test(i3);
}

细节:

  1. 如果有一个位置为false,则为false
  2. 全为true,才返回true(可能有误判)

2.3.3 set

void set(const K& key)
{
	size_t len = N * X;
	size_t i1 = Hash1()(key) % len;
	size_t i2 = Hash2()(key) % len;
	size_t i3 = Hash3()(key) % len;

	_bs.set(i1);
	_bs.set(i2);
	_bs.set(i3);
}

细节:插入元素时,分别将对应的多个映射位置都进行更改

2.3.4 哈希化

struct BKDRHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (auto& ch : s)
		{
			hash = hash * 31 + ch;
		}
		return hash;
	}
};

struct APHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (long i = 0; i < s.size(); ++i)
		{
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));
			}
		}
		return hash;
	}
};

struct DJBHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 5381;
		for (auto& ch : s)
		{
			hash += (hash << 5) + ch;
		}
		return hash;
	}
};

细节:这里选取了评分前三的string哈希化函数,欲知详情,请移步这篇文章~

2.4 布隆过滤器的缺陷

由于其本身特性(一个值拥有多个映射位置),必定会导致存在误判!这种特性其实说两面一体的,既能带来优势(精准快速判断一定不存在),也会带来缺陷(存在会误判)。

还有一个性质,就是不存储元素本身。这也可以说既是优点也是缺点,关键是看怎么使用。这在某些对保密要求比较严格的场合有很大优势。

最后,一般布隆过滤器不支持删除操作。因为一个映射位置可能对应不止一个值,删除可能导致数据错乱。

2.5 布隆过滤器的应用场景

布隆过滤器的一些典型应用场景包括:

  • 防止垃圾邮件:在电子邮件系统中,布隆过滤器可以用来过滤已知的垃圾邮件发送者。
  • 搜索引擎:在搜索引擎中,布隆过滤器可以用来快速判断某个URL是否已经被爬虫访问过,从而避免重复爬取。
  • 数据库缓存:在数据库缓存中,布隆过滤器可以用来判断某个数据是否已经在缓存中,从而避免对数据库的频繁查询。
  • 数据安全:在数据安全领域,布隆过滤器可以用来判断某个数据是否属于黑名单,从而提供额外的安全保障。

三、哈希表、位图和布隆过滤器的对比

3.1 表格对比

数据结构 时间复杂度 空间利用率 准确性 映射类型
哈希表 O(1) 准确 任意
位图 O(1) 准确 整型
布隆过滤器 O(k) 极高 不准确 任意

其中k为哈希化函数的个数,通常这个值很小(本文取k = 3)

3.2 分析对比

  • 哈希表和位图在查询时间复杂度上都是 O(1),但它们的应用场景和数据结构有所不同。哈希表适用于一般的键值对存储和查询,而位图适用于处理大量连续整数的集合
  • 布隆过滤器在查询时间复杂度上稍逊于哈希表和位图,但由于其空间效率高且适用于快速判断元素是否存在的场景,因此在某些特定应用中仍然非常有用。需要注意的是,布隆过滤器存在误报率,且通常不支持删除操作。

【C++练级之路】【Lv.20】位图和布隆过滤器(揭开大数据背后的神秘面纱),进击的C++,数据结构世界,c++,开发语言,数据结构,哈希算法,hash-index文章来源地址https://www.toymoban.com/news/detail-848607.html

真诚点赞,手有余香

到了这里,关于【C++练级之路】【Lv.20】位图和布隆过滤器(揭开大数据背后的神秘面纱)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [C++]哈希应用之位图&布隆过滤器

               主厨:邪王真眼 主厨的主页:Chef‘s blog   所属专栏:c++大冒险        我们之前学习了哈希表,哈希表通过映射关系,实现了O(1)的复杂度来查找数据,哈希在实践中是一个非常重要的思想,今天要学习的就是哈希思想的两大应用:位图与布隆过滤器 给 40 亿个

    2024年04月15日
    浏览(40)
  • 【C++】位图/布隆过滤器+海量数据处理

    ✍ 作者 : 阿润菜菜 📖 专栏 : C++ 题目 给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。 大多数人上来会想到这两种方法:1. 遍历,时间复杂度O(N)2. 排序(O(NlogN)),利用二分查找: logN 但是第一种效率太低了,需要一个

    2024年02月06日
    浏览(49)
  • C++【位图/布隆过滤器—海量数据处理】

    先看下面的一道题 : 1.有40亿个不重复的无符号整数,无序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。 如果我们放到哈希表或红黑树中或用排序和二分查找这两种方法。 前两种方法不可行,因为40亿个整数占用大约16G的内存空间,第一要排序需要先把数

    2024年02月09日
    浏览(65)
  • 【C++】哈希应用:位图 哈希切分 布隆过滤器

    我走后,他们会给你们加班费,会给你们调休,这并不是他们变好了,而是因为我来过。------龙哥 1. 大厂经典的面试题,给你40亿个不重复的无符号整数,让你快速判断一个数是否在这40亿个数中,最直接的思路就是遍历这40亿个整数,逐一进行比对,当然这种方式可以倒是可

    2023年04月09日
    浏览(41)
  • C++ 哈希思想应用:位图,布隆过滤器,哈希切分

    1.问题 给你40亿个不重复的无符号整数,没排过序.给一个无符号整数,如何快速判断一个数是否在这40亿个数中? 2.分析 1 Byte = 8 bit 1KB = 1024 Byte 1MB = 1024KB = 1024 1024 大约= 10的6次方Byte 1GB = 1024MB = 1024 10的6次方 大约= 10的9次方Byte = 10亿字节 因此4GB 约等于40亿字节 其实最快的方式就是

    2024年04月17日
    浏览(49)
  • 【C++学习】哈希的应用—位图与布隆过滤器

    文章简介 : 在这篇文章中,你会学习到关于哈希思想的最常见的两个应用,也就是 位图 与 布隆过滤器 , 文章会讲解位图和布隆过滤器的概念,底层实现,对应的适应的场景,以及相关经典 海量数据面试题 及解析。 所谓位图,就是用每一位来存放某种状态,适用于 海量

    2024年04月14日
    浏览(60)
  • 【C++高阶(六)】哈希的应用--位图&布隆过滤器

    💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:C++从入门到精通⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学习C++   🔝🔝 哈希最常用的应用是unordered 系列的容器,但是当面对海量数据 如100亿个数据中找有没有100这 个数时,使用无序容器的话内存放不下 所以哈希

    2024年02月05日
    浏览(45)
  • 【C++】位图|布隆过滤器|海量数据处理面试题

    所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在。 首先我们来看一道题目: 给定40亿个不重复的无符号整数,没有进行排序。现在给一个无符号整形,如何快速判断一个数是否存在这40亿个数中。 现在有三种

    2024年02月13日
    浏览(46)
  • C++进阶--哈希的应用之位图和布隆过滤器

    哈希是一种映射的思想。 先来看一道题:给40亿个不重复的无符号整数,没排序过。给一个无符号整数,如何 快速判断 一个数 是否在 这40亿个数中。 首先想到的解法可能有这几种: 解法1 :遍历40亿个数,O(N) 解法2 :先排序,快排O( N l o g 2 N Nlog_2N Nl o g 2 ​ N ),再利

    2024年02月22日
    浏览(55)
  • 【C++】哈希的应用:位图、哈希切分与布隆过滤器

    需要云服务器等云产品来学习Linux的同学可以移步/--腾讯云--/--阿里云--/--华为云--/官网,轻量型云服务器低至112元/年,新用户首次下单享超低折扣。   目录 一、位图 1、位图的概念 2、大厂面试题 2.1位图应用(腾讯) 2.2位图应用 3、位图的优缺点 二、哈希切分 三、布隆过滤

    2023年04月09日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包