for (ProducerBatch batch : batches) {
List inflightBatchList = inFlightBatches.get(batch.topicPartition);
if (inflightBatchList == null) {
inflightBatchList = new ArrayList<>();
inFlightBatches.put(batch.topicPartition, inflightBatchList);
}
inflightBatchList.add(batch);
}
}
Step5:将抽取的 ProducerBatch 加入到 inFlightBatches 数据结构,该属性的声明如下:Map<TopicPartition, List< ProducerBatch >> inFlightBatches,即按照 topic-分区 为键,存放已抽取的 ProducerBatch,这个属性的含义就是存储待发送的消息批次。可以根据该数据结构得知在消息发送时以分区为维度反馈 Sender 线程的“积压情况”,max.in.flight.requests.per.connection 就是来控制积压的最大数量,如果积压达到这个数值,针对该队列的消息发送会限流。
Sender#sendProducerData
accumulator.resetNextBatchExpiryTime();
List expiredInflightBatches = getExpiredInflightBatches(now);
List expiredBatches = this.accumulator.expiredBatches(now);
expiredBatches.addAll(expiredInflightBatches);
Step6:从 inflightBatches 与 batches 中查找已过期的消息批次(ProducerBatch),判断是否过期的标准是系统当前时间与 ProducerBatch 创建时间之差是否超过120s,过期时间可以通过参数 delivery.timeout.ms 设置。
Sender#sendProducerData
if (!expiredBatches.isEmpty())
log.trace(“Expired {} batches in accumulator”, expiredBatches.size());
for (ProducerBatch expiredBatch : expiredBatches) {
String errorMessage = "Expiring " + expiredBatch.recordCount + " record(s) for " + expiredBatch.topicPartition
- “:” + (now - expiredBatch.createdMs) + " ms has passed since batch creation";
failBatch(expiredBatch, -1, NO_TIMESTAMP, new TimeoutException(errorMessage), false);
if (transactionManager != null && expiredBatch.inRetry()) {
// This ensures that no new batches are drained until the current in flight batches are fully resolved.
transactionManager.markSequenceUnresolved(expiredBatch.topicPartition);
}
}
Step7:处理已超时的消息批次,通知该批消息发送失败,即通过设置 KafkaProducer#send 方法返回的凭证中的 FutureRecordMetadata 中的 ProduceRequestResult result,使之调用其 get 方法不会阻塞。
Sender#sendProducerData
sensors.updateProduceRequestMetrics(batches);
Step8:收集统计指标,本文不打算详细分析,但后续会专门对 Kafka 的 Metrics 设计进行一个深入的探讨与学习。
Sender#sendProducerData
long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
pollTimeout = Math.min(pollTimeout, this.accumulator.nextExpiryTimeMs() - now);
pollTimeout = Math.max(pollTimeout, 0);
if (!result.readyNodes.isEmpty()) {
log.trace(“Nodes with data ready to send: {}”, result.readyNodes);
pollTimeout = 0;
}
Step9:设置下一次的发送延时,待补充详细分析。
Sender#sendProducerData
sendProduceRequests(batches, now);
private void sendProduceRequests(Map<Integer, List> collated, long now) {
for (Map.Entry<Integer, List> entry : collated.entrySet())
sendProduceRequest(now, entry.getKey(), acks, requestTimeoutMs, entry.getValue());
}
Step10:该步骤按照 brokerId 分别构建发送请求,即每一个 broker 会将多个 ProducerBatch 一起封装成一个请求进行发送,同一时间,每一个 与 broker 连接只会只能发送一个请求,注意,这里只是构建请求,并最终会通过 NetworkClient#send 方法,将该批数据设置到 NetworkClient 的待发送数据中,此时并没有触发真正的网络调用。
sendProducerData 方法就介绍到这里了,既然这里还没有进行真正的网络请求,那在什么时候触发呢?
我们继续回到 runOnce 方法。
1.2.1.2 NetworkClient 的 poll 方法
public List poll(long timeout, long now) {
ensureActive();
if (!abortedSends.isEmpty()) {
// If there are aborted sends because of unsupported version exceptions or disconnects,
// handle them immediately without waiting for Selector#poll.
List responses = new ArrayList<>();
handleAbortedSends(responses);
completeResponses(responses);
return responses;
}
long metadataTimeout = metadataUpdater.maybeUpdate(now); // @1
try {
this.selector.poll(Utils.min(timeout, metadataTimeout, defaultRequestTimeoutMs)); // @2
} catch (IOException e) {
log.error(“Unexpected error during I/O”, e);
}
// process completed actions
long updatedNow = this.time.milliseconds();
List responses = new ArrayList<>(); // @3
handleCompletedSends(responses, updatedNow);
handleCompletedReceives(responses, updatedNow);
handleDisconnections(responses, updatedNow);
handleConnections();
handleInitiateApiVersionRequests(updatedNow);
handleTimedOutRequests(responses, updatedNow);
completeResponses(responses); // @4
return responses;
}
本文并不会详细深入探讨其网络实现部分,Kafka 的 网络通讯后续我会专门详细的介绍,在这里先点出其关键点。
代码@1:尝试更新云数据。
代码@2:触发真正的网络通讯,该方法中会通过收到调用 NIO 中的 Selector#select() 方法,对通道的读写就绪事件进行处理,当写事件就绪后,就会将通道中的消息发送到远端的 broker。
代码@3:然后会消息发送,消息接收、断开连接、API版本,超时等结果进行收集。
代码@4:并依次对结果进行唤醒,此时会将响应结果设置到 KafkaProducer#send 方法返回的凭证中,从而唤醒发送客户端,完成一次完整的消息发送流程。
Sender 发送线程的流程就介绍到这里了,接下来首先给出一张流程图,然后对上述流程中一些关键的方法再补充深入探讨一下。
1.2.2 run 方法流程图
根据上面的源码分析得出上述流程图,图中对重点步骤也详细标注了其关键点。下面我们对上述流程图中 Sender 线程依赖的相关类的核心方法进行解读,以便加深 Sender 线程的理解。
由于在讲解 Sender 发送流程中,大部分都是调用 RecordAccumulator 方法来实现其特定逻辑,故接下来重点对上述涉及到RecordAccumulator 的方法进行一个详细剖析,加强对 Sender 流程的理解。
2、RecordAccumulator 核心方法详解
2.1 RecordAccumulator 的 ready 方法详解
该方法主要就是根据缓存区中的消息,判断哪些分区已经达到发送条件。
RecordAccumulator#ready
public ReadyCheckResult ready(Cluster cluster, long nowMs) {
Set readyNodes = new HashSet<>();
long nextReadyCheckDelayMs = Long.MAX_VALUE;
Set unknownLeaderTopics = new HashSet<>();
boolean exhausted = this.free.queued() > 0;
for (Map.Entry<TopicPartition, Deque> entry : this.batches.entrySet()) { // @1
TopicPartition part = entry.getKey();
Deque deque = entry.getValue();
Node leader = cluster.leaderFor(part); // @2
synchronized (deque) {
if (leader == null && !deque.isEmpty()) { // @3
// This is a partition for which leader is not known, but messages are available to send.
// Note that entries are currently not removed from batches when deque is empty.
unknownLeaderTopics.add(part.topic());
} else if (!readyNodes.contains(leader) && !isMuted(part, nowMs)) { // @4
ProducerBatch batch = deque.peekFirst();
if (batch != null) {
long waitedTimeMs = batch.waitedTimeMs(nowMs);
boolean backingOff = batch.attempts() > 0 && waitedTimeMs < retryBackoffMs;
long timeToWaitMs = backingOff ? retryBackoffMs : lingerMs;
boolean full = deque.size() > 1 || batch.isFull();
boolean expired = waitedTimeMs >= timeToWaitMs;
boolean sendable = full || expired || exhausted || closed || flushInProgress();
if (sendable && !backingOff) { // @5
readyNodes.add(leader);
} else {
long timeLeftMs = Math.max(timeToWaitMs - waitedTimeMs, 0);
// Note that this results in a conservative estimate since an un-sendable partition may have
// a leader that will later be found to have sendable data. However, this is good enough
// since we’ll just wake up and then sleep again for the remaining time.
nextReadyCheckDelayMs = Math.min(timeLeftMs, nextReadyCheckDelayMs);
}
}
}
}
}
return new ReadyCheckResult(readyNodes, nextReadyCheckDelayMs, unknownLeaderTopics);
}
代码@1:对生产者缓存区 ConcurrentHashMap<TopicPartition, Deque< ProducerBatch>> batches 遍历,从中挑选已准备好的消息批次。
代码@2:从生产者元数据缓存中尝试查找分区(TopicPartition) 的 leader 信息,如果不存在,当将该 topic 添加到 unknownLeaderTopics (代码@3),稍后会发送元数据更新请求去 broker 端查找分区的路由信息。
代码@4:如果不在 readyNodes 中就需要判断是否满足条件,isMuted 与顺序消息有关,本文暂时不关注,在后面的顺序消息部分会重点探讨。
代码@5:这里就是判断是否准备好的条件,先一个一个来解读局部变量的含义。
- long waitedTimeMs
该 ProducerBatch 已等待的时长,等于当前时间戳 与 ProducerBatch 的 lastAttemptMs 之差,在 ProducerBatch 创建时或需要重试时会将当前的时间赋值给lastAttemptMs。
- retryBackoffMs
当发生异常时发起重试之前的等待时间,默认为 100ms,可通过属性 retry.backoff.ms 配置。
- batch.attempts()
该批次当前已重试的次数。
- backingOff
后台发送是否关闭,即如果需要重试并且等待时间小于 retryBackoffMs ,则 backingOff = true,也意味着该批次未准备好。
- timeToWaitMs
send 线程发送消息需要的等待时间,如果 backingOff 为 true,表示该批次是在重试,并且等待时间小于系统设置的需要等待时间,这种情况下 timeToWaitMs = retryBackoffMs 。否则需要等待的时间为 lingerMs。
- boolean full
该批次是否已满,如果两个条件中的任意一个满足即为 true。
-
Deque< ProducerBatch> 该队列的个数大于1,表示肯定有一个 ProducerBatch 已写满。
-
ProducerBatch 已写满。
-
boolean expired
是否过期,等于已经等待的时间是否大于需要等待的时间,如果把发送看成定时发送的话,expired 为 true 表示定时器已到达触发点,即需要执行。
- boolean exhausted
当前生产者缓存已不够,创建新的 ProducerBatch 时阻塞在申请缓存空间的线程大于0,此时应立即将缓存区中的消息立即发送到服务器。
- boolean sendable
是否可发送。其满足下面的任意一个条件即可:
-
该批次已写满。(full = true)。
-
已等待系统规定的时长。(expired = true)
-
发送者内部缓存区已耗尽并且有新的线程需要申请(exhausted = true)。
-
该发送者的 close 方法被调用(close = true)。
-
该发送者的 flush 方法被调用。
2.2 RecordAccumulator 的 drain方法详解
RecordAccumulator#drain
public Map<Integer, List> drain(Cluster cluster, Set nodes, int maxSize, long now) { // @1
if (nodes.isEmpty())
return Collections.emptyMap();
Map<Integer, List> batches = new HashMap<>();
for (Node node : nodes) {
List ready = drainBatchesForOneNode(cluster, node, maxSize, now); // @2
batches.put(node.id(), ready);
}
return batches;
}
代码@1:我们首先来介绍该方法的参数:
- Cluster cluster
集群信息。
- Set< Node> nodes
已准备好的节点集合。
- int maxSize
一次请求最大的字节数。
- long now
当前时间。
代码@2:遍历所有节点,调用 drainBatchesForOneNode 方法抽取数据,组装成 Map<Integer /** brokerId */, List< ProducerBatch>> batches。
接下来重点来看一下 drainBatchesForOneNode。
RecordAccumulator#drainBatchesForOneNode
private List drainBatchesForOneNode(Cluster cluster, Node node, int maxSize, long now) {
int size = 0;
List parts = cluster.partitionsForNode(node.id()); // @1
List ready = new ArrayList<>();
int start = drainIndex = drainIndex % parts.size(); // @2
do { // @3
PartitionInfo part = parts.get(drainIndex);
TopicPartition tp = new TopicPartition(part.topic(), part.partition());
this.drainIndex = (this.drainIndex + 1) % parts.size();
if (isMuted(tp, now))
continue;
Deque deque = getDeque(tp); // @4
if (deque == null)
continue;
synchronized (deque) {
// invariant: !isMuted(tp,now) && deque != null
ProducerBatch first = deque.peekFirst(); // @5
if (first == null)
continue;
// first != null
boolean backoff = first.attempts() > 0 && first.waitedTimeMs(now) < retryBackoffMs; // @6
// Only drain the batch if it is not during backoff period.
if (backoff)
continue;
if (size + first.estimatedSizeInBytes() > maxSize && !ready.isEmpty()) { // @7
break;
} else {
if (shouldStopDrainBatchesForPartition(first, tp))
break;
// 这里省略与事务消息相关的代码,后续会重点学习。
batch.close(); // @8
size += batch.records().sizeInBytes();
ready.add(batch);
batch.drained(now);
}
}
} while (start != drainIndex);
return ready;
}
代码@1:根据 brokerId 获取该 broker 上的所有主分区。
代码@2:初始化 start。这里首先来阐述一下 start 与 drainIndex 。
-
start 当前开始遍历的分区序号。
-
drainIndex 上次抽取的队列索引后,这里主要是为了每个队列都是从零号分区开始抽取。
代码@3:循环从缓存区抽取对应分区中累积的数据。
代码@4:根据 topic + 分区号从生产者发送缓存区中获取已累积的双端Queue。
代码@5:从双端队列的头部获取一个元素。(消息追加时是追加到队列尾部)。
代码@6:如果当前批次是重试,并且还未到阻塞时间,则跳过该分区。
代码@7:如果当前已抽取的消息总大小 加上新的消息已超过 maxRequestSize,则结束抽取。
代码@8:将当前批次加入到已准备集合中,并关闭该批次,即不在允许向该批次中追加消息。
关于消息发送就介绍到这里,NetworkClient 的 poll 方法内部会调用 Selector 执行就绪事件的选择,并将抽取的消息通过网络发送到 Broker 服务器,关于网络后面的具体实现,将在后续文章中单独介绍。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Java)
言尽于此,完结
无论是一个初级的 coder,高级的程序员,还是顶级的系统架构师,应该都有深刻的领会到设计模式的重要性。
- 第一,设计模式能让专业人之间交流方便,如下:
程序员A:这里我用了XXX设计模式
程序员B:那我大致了解你程序的设计思路了
- 第二,易维护
项目经理:今天客户有这样一个需求…
程序员:明白了,这里我使用了XXX设计模式,所以改起来很快
- 第三,设计模式是编程经验的总结
程序员A:B,你怎么想到要这样去构建你的代码
程序员B:在我学习了XXX设计模式之后,好像自然而然就感觉这样写能避免一些问题
- 第四,学习设计模式并不是必须的
程序员A:B,你这段代码使用的是XXX设计模式对吗?
程序员B:不好意思,我没有学习过设计模式,但是我的经验告诉我是这样写的
从设计思想解读开源框架,一步一步到Spring、Spring5、SpringMVC、MyBatis等源码解读,我都已收集整理全套,篇幅有限,这块只是详细的解说了23种设计模式,整理的文件如下图一览无余!
搜集费时费力,能看到此处的都是真爱!
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!文章来源:https://www.toymoban.com/news/detail-848617.html
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算文章来源地址https://www.toymoban.com/news/detail-848617.html
程序员A:B,你怎么想到要这样去构建你的代码
程序员B:在我学习了XXX设计模式之后,好像自然而然就感觉这样写能避免一些问题
- 第四,学习设计模式并不是必须的
程序员A:B,你这段代码使用的是XXX设计模式对吗?
程序员B:不好意思,我没有学习过设计模式,但是我的经验告诉我是这样写的
[外链图片转存中…(img-3oSccB44-1712172979982)]
从设计思想解读开源框架,一步一步到Spring、Spring5、SpringMVC、MyBatis等源码解读,我都已收集整理全套,篇幅有限,这块只是详细的解说了23种设计模式,整理的文件如下图一览无余!
[外链图片转存中…(img-MrpnBr3m-1712172979982)]
搜集费时费力,能看到此处的都是真爱!
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
到了这里,关于KafkaProducer Sender 线程详解(含详细的执行流程图)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!