从库延迟案例分析

这篇具有很好参考价值的文章主要介绍了从库延迟案例分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景介绍

近来一套业务系统,从库一直处于延迟状态,无法追上主库,导致业务风险较大。从资源上看,从库的CPU、IO、网络使用率较低,不存在服务器压力过高导致回放慢的情况;从库开启了并行回放;在从库上执行show processlist看到没有回放线程阻塞,回放一直在持续;解析relay-log日志文件,发现其中并没大事务回放。

过程分析

现象确认

收到运维同事的反馈,有一套从库延迟的非常厉害,提供了show slave status延迟的截图信息

从库延迟案例分析

持续观察了一阵show slave status的变化,发现pos点位信息在不停的变化,Seconds_Behind_master也是不停的变化的,总体趋势还在不停的变大。

资源使用

观察了服务器资源使用情况,可以看到占用非常低

从库延迟案例分析

观察从库进程情况,基本上只能看到有一个线程在回放工作

从库延迟案例分析

并行回放参数说明

在主库设置了binlog_transaction_dependency_tracking=WRITESET

在从库设置了slave_parallel_type=LOGICAL_CLOCKslave_parallel_workers=64

error log日志对比

从error log中取并行回放的日志进行分析

$ grep 010559 100werror3306.log | tail -n 3
2024-01-31T14:07:50.172007+08:00 6806 [Note] [MY-010559] [Repl] Multi-threaded slave statistics for channel 'cluster': seconds elapsed = 120; events assigned = 3318582273; worker queues filled over overrun level = 207029; waite
d due a Worker queue full = 238; waited due the total size = 0; waited at clock conflicts = 348754579743300 waited (count) when Workers occupied = 34529247 waited when Workers occupied = 76847369713200

2024-01-31T14:09:50.078829+08:00 6806 [Note] [MY-010559] [Repl] Multi-threaded slave statistics for channel 'cluster': seconds elapsed = 120; events assigned = 3319256065; worker queues filled over overrun level = 207029; waite
d due a Worker queue full = 238; waited due the total size = 0; waited at clock conflicts = 348851330164000 waited (count) when Workers occupied = 34535857 waited when Workers occupied = 76866419841900

2024-01-31T14:11:50.060510+08:00 6806 [Note] [MY-010559] [Repl] Multi-threaded slave statistics for channel 'cluster': seconds elapsed = 120; events assigned = 3319894017; worker queues filled over overrun level = 207029; waite
d due a Worker queue full = 238; waited due the total size = 0; waited at clock conflicts = 348943740455400 waited (count) when Workers occupied = 34542790 waited when Workers occupied = 76890229805500

上述信息的详细解释,可以参考MTS性能监控你知道多少

去掉了发生次数比较少的统计,显示了一些关键数据的对比

从库延迟案例分析

可以发现自然时间120,回放的协调线程有90多秒由于无法并行回放而进入等待,有近20秒是由于没有空闲的work线程进入等待,折算下来协调线程工作的时间只有10秒左右。

并行度统计

众所周知,mysql从库并行回放主要依赖于binlog中的last_commmitted来做判断,如果事务的last_committed相同,则基本上可以认为这些事务可以并行回放,下面从环境中获取一个relay log进行并行回放的大概统计

$ mysqlsqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1
; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>=1 && $2 <11){sum+=$2}} END {print sum}' 
235703
$ mysqlsqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1
; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>10){sum+=$2}} END {print sum}'
314694

上述第一条命令,是统计last_committed相同的事务数量在1-10个,即并行回放程度较低或者是无法并行回放,这些事务总数量为235703,占43%,详细解析并行回放度比较低的事务分布,可以看出这部分last_committed基本上都是单条的,都需要等待先序事务回放完成后,自己才能进行回放,这就会造成前面日志中观察到的协调线程等待无法并行回放而进入等待的时间比较长的情况

$ mysqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>=1 && $2 <11) {print $2}}' | sort | uniq -c
 200863 1
  17236 2
     98 3
     13 4
      3 5
      1 7

第二条命令统计last_committed相同的事务数量超过10个的总事务数,其数量为314694,占57%,详细解析了这些并行回放度比较高的事务,可以看到每一组是在6500~9000个事务数间

$ mysqlsqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1
; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>11){print $0}}' | column -t
last_commited  group_count  Percentage
1              7340         1.33%
11938          7226         1.31%
23558          7249         1.32%
35248          6848         1.24%
46421          7720         1.40%
59128          7481         1.36%
70789          7598         1.38%
82474          6538         1.19%
93366          6988         1.27%
104628         7968         1.45%
116890         7190         1.31%
128034         6750         1.23%
138849         7513         1.37%
150522         6966         1.27%
161989         7972         1.45%
175599         8315         1.51%
189320         8235         1.50%
202845         8415         1.53%
218077         8690         1.58%
234248         8623         1.57%
249647         8551         1.55%
264860         8958         1.63%
280962         8900         1.62%
297724         8768         1.59%
313092         8620         1.57%
327972         9179         1.67%
344435         8416         1.53%
359580         8924         1.62%
375314         8160         1.48%
390564         9333         1.70%
407106         8637         1.57%
422777         8493         1.54%
438500         8046         1.46%
453607         8948         1.63%
470939         8553         1.55%
486706         8339         1.52%
503562         8385         1.52%
520179         8313         1.51%
535929         7546         1.37%

last_committed机制介绍

主库的参数binlog_transaction_dependency_tracking用于指定如何生成其写入二进制日志的依赖信息,以帮助从库确定哪些事务可以并行执行,即通过该参数控制last_committed的生成机制,参数可选值有COMMIT_ORDER、WRITESET、SESSION_WRITESET。
从下面这段代码,很容易看出来三种参数关系:

  1. 基础算法为COMMIT_ORDER
  2. WRITESET算法是在COMMIT_ORDER基础上再计算一次
  3. SESSION_WRITESET算法是在WRITESET基础上再计算一次

从库延迟案例分析

由于我的实例设置的是WRITESET,因此关注COMMIT_ORDER算法和的WRITESET算法即可。

COMMIT_ORDER

COMMIT_ORDER计算规则:如果两个事务在主节点上是同时提交的,说明两个事务的数据之间没有冲突,那么一定也是可以在从节点上并行执行的,理想中的典型案例如下面的例子

session-1 session-2
BEGIN BEGIN
INSERT t1 values(1)
INSERT t2 values(2)
commit (group_commit) commit (group_commit)

但对于MySQL来说,group_commit是内部行为,只要session-1和session-2是同时执行commit,不管内部是否合并为group_commit,两个事务的数据本质上都是没有冲突的;再退一步来讲,只要session-1执行commit之后,session-2没有新的数据写入,两个事务依旧没有数据冲突,依然可以并行复制。

session-1 session-2
BEGIN BEGIN
INSERT t1 values(1)
INSERT t2 values(2)
commit
commit

对于更多并发线程的场景,可能这些线程不能同时并行复制,但部分事务却可以。以如下一个执行顺序来说,在session-3提交之后,session-2没有新的写入,那么这两个事务是可以并行复制的;而session-3提交后,session-1又插入了一条新的数据,此时无法判定数据冲突,所以session-3和session-1的事务无法并行复制;但session-2提交后,session-1之后没有新数据写入,所以session-2和session-1又可以并行复制。因此,这个场景中,session-2分别可以和session-1,session-3并行复制,但3个事务无法同时并行复制。

session-1 session-2 session-3
BEGIN BEGIN BEGIN
INSERT t1 values(1) INSERT t2 values(1) INSERT t3 values(1)
INSERT t1 values(2) INSERT t2 values(2)
commit
INSERT t1 values(3)
commit
commit

WRITESET

实际上是commit_order+writeset的组合,会先通过commit_order计算出一个last_committed值,然后再通过writeset计算一个新值,最后取两者间的小值作为最终事务gtid的last_committed。

在MySQL中,writeset本质上是对 schema_name + table_name + primary_key/unique_key 计算的hash值,在DML执行语句过程中,通过binlog_log_row生成row_event之前,会将DML语句中所有的主键/唯一键都单独计算hash值,并加入到事务本身的writeset列表中。而如果存在无主键/唯一索引的表,还会对事务设置has_missing_keys=true。

参数设置为WRITESET,但是并不一定就能使用上,其限制如下

  1. 非DDL语句或者表具有主键或者唯一键或者空事务
  2. 当前session使用的hash算法与hash map中的一致
  3. 未使用外键
  4. hash map的容量未超过binlog_transaction_dependency_history_size的设置
    以上4个条件均满足时,则可以使用WRITESET算法,如果有任意一个条件不满足,则会退化为COMMIT_ORDER计算方式

从库延迟案例分析

具体WRITESET算法如下,事务提交时:

  1. last_committed设置为m_writeset_history_start,此值为m_writeset_history列表中最小的sequence_number

  2. 遍历事务的writeset列表

    a 如果某个writeset在全局m_writeset_history中不存在,构建一个pair<writeset, 当前事务的sequence_number>对象,插入到全局m_writeset_history列表中

    b. 如果存在,那么last_committed=max(last_committed, 历史writeset的sequence_number值),并同时更新m_writeset_history中该writeset对应的sequence_number为当前事务值

  3. 如果has_missing_keys=false,即事务所有数据表均包含主键或者唯一索引,则最后取commit_order和writeset两种方式计算的最小值作为最终的last_committed值

从库延迟案例分析

TIPS:基于上面WRITESET规则,就会出现后提交的事务的last_committed比先提交的事务还小的情况

结论分析

结论描述

根据WRITESET的使用限制,对relay-log及事务中涉及到的表结构进行了对比,分析单last_committed的事务组成发现如下两种情况:

  1. 单last_committed的事务中涉及到的数据和sequence_number存在数据冲突
  2. 单last_committed的事务中涉及到的表存在无主键的情况,而且这种事务特别多

从上面的分析中可以得出结论:无主键表的事务太多,导致WRITESET退化为COMMIT_ORDER,而由于数据库为TP应用,事务都快速提交,多个事务提交无法保证在一个commit周期内,导致COMMIT_ORDER机制产生的last_committed重复读很低。从库也就只能串行回放这些事务,引起回放延迟。

优化措施

  1. 从业务侧对表做改造,在允许的情况下给相关表都添加上主键。
  2. 尝试调大参数binlog_group_commit_sync_delay、binlog_group_commit_sync_no_delay_count从0修改为10000,由于特殊环境限制,该调整并未生效,不同的场景可能会有不同的表现。

Enjoy GreatSQL 😃

关于 GreatSQL

GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html

从库延迟案例分析

技术交流群:

微信:扫码添加GreatSQL社区助手微信好友,发送验证信息加群

从库延迟案例分析文章来源地址https://www.toymoban.com/news/detail-848746.html

到了这里,关于从库延迟案例分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python案例分析|文本相似度比较分析

     本案例通过设计和实现有关文本相似度比较的类Vector和Sketch,帮助大家进一步掌握设计Python类来解决实际问题的能力。 通过计算并比较文档的摘要可实现文本的相似度比较。 文档摘要的最简单形式可以使用文档中的k-grams(k个连续字符)的相对频率的向量来表示。假设字符

    2024年02月16日
    浏览(52)
  • C++软件分析工具案例分析集锦汇总

    本文是 C++常用软件分析工具从入门到精通案例集锦 专栏的导航贴( 点击链接,跳转到专栏主页,欢迎订阅,持续更新… )。 专栏介绍 :根据近几年C++软件异常排查的项目实践,详细地讲述如何使用PE工具、Dependency Walker、GDIView、Process Explorer、Process Monitor、API Monitor、Clum

    2024年02月11日
    浏览(50)
  • python数据分析案例——天猫订单综合分析

    前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 什么是数据分析 明确目的–获得数据(爬虫,现有,公开的数据)–数据预处理——数据可视化——结论 准备 环境使用: 在开始写我们的代码之前,我们要准备好运行代码的程序 Anaconda (python3.9) – 识别我们写的代码 开发工

    2024年02月03日
    浏览(46)
  • C++常用软件分析工具案例分析集锦汇总

    本文是 C++常用软件分析工具从入门到精通案例集锦 专栏的导航贴( 点击链接,跳转到专栏主页,欢迎订阅,持续更新… )。 专栏介绍 :根据近几年C++软件异常排查的项目实践,详细地讲述如何使用PE工具、Dependency Walker、GDIView、Process Explorer、Process Monitor、API Monitor、Clum

    2024年02月11日
    浏览(42)
  • es 查询案例分析

    有这样一种场景,比如我们想搜索 title:Brown fox body:Brown fox 文章索引中有两条数据,兔子和狐狸两条数据 结果肯定是想要数据二,狐狸优先展示 但是,然后搜索的时候,会对搜素词 Brown fox 进行分词,导致数据一优先级更高 可以看下结果: 优先展示的是兔子,有 0.8 的算

    2024年03月19日
    浏览(49)
  • 案例分析真题-信息安全

    【问题1】 【问题2】 【问题3】 【问题1】 【问题2】 【问题3】 【问题1】 【问题2】 【问题3】 骚戴理解 :这个破题目完全考的知识储备,不知道的连手都动不了,没法分析 【问题1】 骚戴理解 :这里很容易想到口令认证太简单的,容易破解,不安全,公钥认证复杂,安全

    2024年02月07日
    浏览(58)
  • GreatSQL 死锁案例分析

    客户业务发生死锁的报错,根据业务程序日志及业务流程,发现造成死锁的原因是:事务1 delete + insert ,事务2 delete + insert 2个事务交替执行导致的死锁;由于GAP锁阻塞了插入意向锁,并且当delete的数据存在时死锁不会发生,当delete的数据不存在时,会发生死锁。 本次测试基

    2024年04月22日
    浏览(36)
  • 软考案例分析真题

    1、 试题一(25分) 系统集成A公司中标某市智能交通系统建设项目。李总负责此项目的启动工作,任命小王为项目经理。小王制定并发布了项目章程,其中明确建设周期为1年,于2018年6月开始。 项目启动后,小王将团队分为了开发实施组与质量控制组,分工制订了范围管理计

    2024年02月11日
    浏览(42)
  • 2022系统分析师案例分析真题背记内容

    以下内容仅为个人根据当年系分案例真题问题整理的偏需要记背的考点答案,方便个人背诵和记忆使用。方便文字转语音,所以内容全为纯文字内容,以下内容仅供参考。 1.数据流图: 数据流图的特点:通过系统内数据的流动来描述系统功能的-一种方法。强调系统中的数据流动

    2024年02月06日
    浏览(51)
  • SPSS--如何使用分层分析以及分层分析案例分享

         分层分析: 将资料按某个或某些需要控制的变量的不同分类进行分层,然后再估计暴露因子与某结局变量之间关系的一种资料分析方法 。 分层分析的最重要的用途是评估和控制混杂因子所致的混杂偏倚。通过按混杂因子分层,可使每层内的两个比较组在所控制的混杂

    2024年02月12日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包