【C++算法竞赛 · 图论】图论基础

这篇具有很好参考价值的文章主要介绍了【C++算法竞赛 · 图论】图论基础。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

图论基础

图的相关概念

图的定义

图的分类

按数量分类:

按边的类型分类:

边权

简单图

路径

连通

无向图

有向图

图的存储

方法概述

代码

复杂度


前言

图论(Graph theory),是 OI 中的一样很大的一个模块,围绕它有很多高难度的算法以及高级的概念。这篇文章将介绍关于图论的一部分基础概念(干货满满!),话不多说,步入正题——

图论基础

(干货太多了,建议先收藏!)

图的相关概念

图的定义

图(graph)是一个二元组 G = (V(G), E(G))。其中 V(G) 是非空集,称为 点集(vertex set),对于 V 中的每个元素,我们称其为 顶点(vertex)或 节点(node),简称 E(G) 为 V(G) 各结点之间边的集合,称为 边集(edge set)

我们一般用 G = (V, E) 表示图。

举个例子:

【C++算法竞赛 · 图论】图论基础,C++:算法竞赛,c++,图论,算法

这就是一张图,1,2,3,4,5 就是它的节点。

推荐一个网站:Cs Academy

这里有十分好用的图编辑器,可以帮你加强理解图论!

图的分类

按数量分类:

V, E 都是有限集合时,称 G 为 有限图

V 或 E 是无限集合时,称 G 为 无限图

按边的类型分类:

图有多种,包括 无向图 (undirected graph)有向图 (directed graph)混合图 (mixed graph) 等

若为无向图,则图中的每个元素为一个无序二元组 (u, v),称作 无向边 (undirected edge),简称 边 (edge),其中 u, v ∈ V。设 e = (u, v),则 uv 称为 e 的 端点 (endpoint)

若为有向图,则图中的每一个元素为一个有序二元组 (u, v),有时也写作 u → v,称作 有向边 (directed edge) 或 弧 (arc),在不引起混淆的情况下也可以称作 边 (edge)。设 e = u → v ,则此时 称为 e 的 起点 (tail)v 称为 e 的 终点 (head),起点和终点也称为 e 的 端点 (endpoint)。并称 uv 的直接前驱,v 是 u 的直接后继。

若为混合图,则图中既有 有向边,又有 无向边

【C++算法竞赛 · 图论】图论基础,C++:算法竞赛,c++,图论,算法

还拿这张图来说,这是一个无向图

【C++算法竞赛 · 图论】图论基础,C++:算法竞赛,c++,图论,算法

这就是一张有向图

边权

若图的每条边都被赋予一个数作为该边的 ,则称这张图为 赋权图。如果这些权都是正实数,就称为 正权图

【C++算法竞赛 · 图论】图论基础,C++:算法竞赛,c++,图论,算法

这张图就是一张 赋权图

简单图

自环 (loop):对 E 中的边 e = (u,v) ,若 u = v ,则 e 被称作一个自环。

重边 (multiple edge):若 E 中存在两个完全相同的元素(边)e1,e2 ,则它们被称作(一组)重边。

简单图 (simple graph):若一个图中没有自环和重边,它被称为简单图。具有至少两个顶点的简单无向图中一定存在度相同的结点。

如果一张图中有自环或重边,则称它为 多重图 (multigraph)

与一个顶点 v 关联的边的条数称作该顶点的 度 (degree),记作 d(v)。特别地,对于边 (v, v),则每条这样的边要对 d(v) 产生 2 的贡献。

对于无向简单图,有 d(v) = |N(v)|

推论:在任意图中,度数为奇数的点必然有偶数个。(一笔画问题应该了解过吧)

d(v) = 0,则称 v 为 孤立点 (isolated vertex)

若 d(v) = 1,则称 v 为 叶节点 (leaf vertex)/悬挂点 (pendant vertex)

若 2 | d(v),则称 v 为 偶点 (even vertex),否则为 奇点 (odd vertex)

d(v) = |V| - 1,则称 v 为 支配点 (universal vertex)

(这些概念了解就行了,不需要特别去记)

对一张图,所有节点的度数的最小值称为 最小度 (minimum degree),最大值称为 最大度 (maximum degree)。

在有向图中,以一个顶点为起点的边的条数称为该顶点的 出度 (out-degree),以一个顶点  为终点的边的条数称为该节点的 入度 (in-degree)

如果给定一个序列 a,可以找到一个图 G,以其为度数列,则称 a 是 可图化 的。

如果给定一个序列 a,可以找到一个简单图 G,以其为度数列,则称 a 是 可简单图化 的。

路径

途径 (walk):途径是连接一连串顶点的边的序列,可以为有限或无限长度。形式化地说,一条有限途径 w 是一个边的序列 e1,e2,...,ek,使得存在一个顶点序列 v0,v1,...,vk 满足 ei = (v i-1,v i),其中 i ∈ [1, k] 。这样的途径可以简写为 v0  → v1 → v2 → ... → vk 。通常来说,边的数量 k 被称作这条途径的 长度(如果边是带权的,长度通常指途径上的边权之和,题目中也可能另有定义)。

看不懂?(我也看不懂)为了更好地理解,可以把一张图当作一个地图,节点就是车站,边就是路,那么路径就是从一个车站到另一个车站的路线。如果这张图是赋权图,也就是说车站之间有了距离,那么路径的 长度 就是车站到车站的路线的长度。

回路 (circuit):对于一条路径 w,若 v0 = vk,则称 w 是一条回路。

连通

无向图

对于一张无向图 G = (V,E),对于 u,v ∈ V,若存在一条途径使得 v0 = u, vk = v,则称 uv 是 连通的 (connected)。由定义,任意一个顶点和自身连通,任意一条边的两个端点连通。

若无向图 G = (V,E),满足其中任意两个顶点均连通,则称 G 是 连通图 (connected graph),这一性质称作 连通性 (connectivity)

有向图

对于一张有向图 G = (V,E),对于 u,v ∈ V,若存在一条途径使得 v0 = u, vk = v, 则称 u 可达 v。由定义,任意一个顶点可达自身,任意一条边的起点可达终点。(无向图中的连通也可以视作双向可达。)

若一张有向图的节点两两互相可达,则称这张图是 强连通的 (strongly connected)

若一张有向图的边替换为无向边后可以得到一张连通图,则称原来这张有向图是 弱连通的 (weakly connected)

到这,你已经看过了图的大部分概念。全是干货,如果还没理解,可以收藏起来慢慢看!

图的存储

本文会介绍最常用的存储方法,也就是:直接存边

方法概述

使用一个数组来存边,数组中的每个元素都包含一条边的起点与终点(带边权的图还包含边权)。

代码

struct Edge {
  int u, v;
};
vector<Edge> e;

复杂度

查询是否存在某条边:O(m)

遍历一个点的所有出边:O(m) 

遍历整张图:O(nm)

空间复杂度:O(m)


干货太多,整理得肝疼,求个点赞收藏不过分吧!(求求了!)

本文就到这里,下次再见!文章来源地址https://www.toymoban.com/news/detail-848762.html

到了这里,关于【C++算法竞赛 · 图论】图论基础的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++ [图论算法详解] 欧拉路&欧拉回路

    蒟蒻还在上课,所以文章更新的实在慢了点 那今天就来写一篇这周刚学的欧拉路和欧拉回路吧 在 一个风雪交加的夜晚 18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来。有个人提出一个问题:一个步行者怎样才能不重复、不遗

    2023年04月14日
    浏览(30)
  • C++ 图论算法之欧拉路径、欧拉回路算法(一笔画完)

    公众号:编程驿站 本文从哥尼斯堡七桥的故事说起。 哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。 1736 年瑞士数学家欧拉( Eul

    2024年04月17日
    浏览(57)
  • 算法——弗洛伊德算法(Floyd-Warshall)(图论)(c++)

    (蒟蒻的第四篇文章,希望dalao勿喷) (希望没问题) 声明: 1.本人变量定义的名称很low 2.本人用的方法也很low 3.但我觉得文章应该不low  (盲目自信) 第四篇文章讲讲Floyd算法 Floyd算法是一种寻找最短路径的常见算法,其特点是: 短,好理解(虽然其他算法也挺好理解的

    2023年04月09日
    浏览(21)
  • 算法基础课-搜索与图论

    题目链接:842. 排列数字 - AcWing题库 思路:写的很好的题解AcWing 842. 排列数字--深度优先遍历代码+注释 - AcWing 也可以考虑使用c++自带的next_permutation函数直接秒了: 题目链接:844. 走迷宫 - AcWing题库 思路:由于bfs是一层一层扩展,所以能保证走到终点时,走过的距离最短,所

    2024年04月15日
    浏览(38)
  • 搜索与图论(acwing算法基础)

    排列数字 n皇后 走迷宫 单链表 点击跳转至例题 idx存的是指针 树与图的深度优先搜索 树的重心 每个节点都是一个单链表 模拟队列 hh = 0 , tt = -1 有向图的拓扑序列 都是从前指向后,即有向无环图(不能有环) 所有入度为0的点,都能排在前面的位置 删掉t-j的边,仅仅是j的入度

    2024年02月08日
    浏览(31)
  • 算法竞赛:初级算法(第一章:基础数据结构)

    动态链表 动态链表需要 临时分配链表节点 ,使用完毕后释放。 优点 :能及时释放空间,不使用多余内存 缺点 :需要管理空间,容易出错(竞赛一般不用动态链表) 静态链表 静态链表使用 预先分配的一段连续空间 存储链表,这种链表在逻辑上是成立的。 有两种做法:

    2024年01月19日
    浏览(31)
  • 图论基础: 邻接矩阵与邻接表(c++实现)

    邻接矩阵(Adjacency Matrix)是表示 顶点之间相邻关系 的矩阵。 设G=(顶点,边):G=(V,E)是一个图。其中V={v1,v2,…,vn} [1] 。G的邻接矩阵是一个具有下列性质的n阶方阵: 无向图的邻接矩阵一定是成对角线对称的,是一个 对称矩阵 ,有向图 不一定 是对称的。 有向图当把它的 行

    2024年02月05日
    浏览(25)
  • acwing算法基础之搜索与图论--kruskal算法

    kruskal算法的关键步骤为: 将所有边按照权重从小到大排序。 定义集合S,表示生成树。 枚举每条边(a,b,c),起点a,终点b,边长c。如果结点a和结点b不连通(用并查集来维护),则将这条边加入到集合S中。 kruskal算法的时间复杂度为O(mlogm),它用来解决稀疏图的最小生成树问题

    2024年02月05日
    浏览(32)
  • 【C++算法模板】图论-拓扑排序,超详细注释带例题

    推荐视频链接:D01 拓扑排序 给定一张 有向无环图 ,排出所有顶点的一个序列 A A A 满足:对于图中的每条有向边 ( x , y ) (x,y) ( x , y ) , x x x 在 A A A 中都出现在 y y y 之前,则称 A A A 是该图的顶点的一个拓扑序 拓扑排序 可以判断有向图中是否有环,可以生成拓扑序列 对于下

    2024年04月15日
    浏览(30)
  • 图论算法基础:单源最短路径Dijkstra算法分析

    在 有向带权图 中给定一个起始顶点(源点),Dijkstra算法可以求出 所有其他顶点 到源点的最短路径,Dijkstra算法 不能用于同时含有正负权值的边的图 Source 顶点集合:已经确定 到源点的最短路径 的顶点就会加入 Source 集合中, Source 集合初始时只有源点 dist 数组:用于记录每个顶点到

    2024年02月11日
    浏览(26)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包