基于香橙派AIpro将开源框架模型转换为昇腾模型

这篇具有很好参考价值的文章主要介绍了基于香橙派AIpro将开源框架模型转换为昇腾模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文分享自华为云社区《如何基于香橙派AIpro将开源框架模型转换为昇腾模型》,作者:昇腾CANN。

在前面的介绍中,我们知道了如何基于香橙派AIpro开发AI推理应用,也大致了解到在推理之前,需要把原始网络模型 (可能是 PyTorch 的、TensorFlow,可能是Caffe的等等) 转换成 .om 模型,然后才能调用昇腾的aclmdlExecute 等模型执行接口在香橙派AIpro进行模型推理。这个模型转换的过程就要用到 ATC 工具,目前 ATC 工具直接支持从 Caffe、ONNX、TensorFlow 以及 MindSpore模型的转换,所以如果你的训练框架是 PyTorch,则需要做 torch.onnx.export 操作导出成ONNX模型后才能使用ATC工具。

01 ATC工具简介

昇腾张量编译器(Ascend Tensor Compiler,简称ATC)是昇腾模型转换工具,它可以将开源框架的网络模型(例如TensorFlow、ONNX等)转换为昇腾AI处理器支持的模型文件(.om格式),用于后续的模型推理。

模型转换过程中,ATC会进行算子调度优化、权重数据重排、内存使用优化等操作,对开源框架的网络模型做进一步调优,使其高效地在昇腾AI处理器上执行。

主要过程:

  1. 开源框架网络模型经过Parser解析后,转换为昇腾的中间图IR Graph。
  2. 中间图IR Graph经过图准备,图拆分,图优化,图编译等一系列操作后,转成适配昇腾AI处理器的*.om模型文件。
  3. 用户可调用AscendCL提供的模型加载、执行等接口实现模型推理。

02 ATC工具基本使用方法

下面以Caffe框架ResNet-50网络模型为例,介绍如何使用ATC工具转换模型。

1、将Caffe框架ResNet-50网络模型的模型文件*.prototxt、权重文件*.caffemodel上传至ATC工具所在的Linux服务器。

2、执行如下命令进行模型转换。

atc --framework=0 --soc_version=${soc_version} 
--model=$HOME/mod/resnet50.prototxt 
--weight=$HOME/mod/resnet50.caffemodel 
--output=$HOME/module/out/caffe_resnet50

参数解释如下:

  • --framework:原始网络模型框架类型,0表示Caffe框架。
  • --soc_version:指定模型转换时昇腾AI处理器的版本,可执行npu-smi info命令进行查询,在查询到的“Name”前增加Ascend信息,例如“Name”对应取值为xxxyy。
  • --model:原始网络模型文件路径,含文件名。
  • --weight:原始网络模型权重文件路径,含文件名,仅当原始网络模型是Caffe时需要指定。
  • --output:转换后的*.om模型文件路径,含文件名,转换成功后,模型文件名自动以.om后缀结尾。

3、若提示ATC run success信息,则说明模型转换成功。

在--output参数指定的路径下,可查看转换后的模型文件,例如caffe_resnet50.om。

03 ATC工具高阶用法介绍

上述只给出了ATC工具进行模型转换最基本的命令,下面介绍ATC工具支持的更多特性,方便用户进一步了解。

1、ATC工具支持将原始模型文件或昇腾*.om模型文件转换成json格式

如果用户不方便查看原始模型或离线模型的参数信息时,可以将原始模型或离线模型转成json文件进行查看:

  • 原始模型文件—>json文件
atc --mode=1 --framework=0 --om=$HOME/mod/resnet50.prototxt --json=$HOME/mod/out/caffe_resnet50.json
  • 昇腾*.om模型文件—>json文件
atc --mode=1 --om=$HOME/mod/out/caffe_resnet50.om --json=$HOME/mod/out/caffe_resnet50.json

2、ATC工具支持自定义*.om模型的输入输出数据类型

模型转换时支持指定网络模型的输入或输出节点的数据类型、Format,支持设置精度等。此处的示例命令场景是针对Caffe框架ResNet50网络模型,转换后的模型输入为FP16类型,指定Pooling算子作为输出,并且该输出节点为FP16类型。

atc --framework=0 --soc_version=${soc_version} --model=$HOME/mod/resnet50.prototxt --weight=$HOME/mod/resnet50.caffemodel --output=$HOME/mod/out/caffe_resnet50  --input_fp16_nodes="data" --out_nodes="pool1:0" --output_type="pool1:0:FP16" 

3、ATC工具支持设置动态BatchSize/动态分辨率

某些推理场景,如检测出目标后再执行目标识别网络,由于目标个数不固定导致目标识别网络输入BatchSize不固定;如果每次推理都按照最大的BatchSize或最大分辨率进行计算,会造成计算资源浪费,因此,模型转换需要支持动态BatchSize和动态分辨率的设置,实际推理时,通过AscendCL接口设置本次推理所需的BatchSize和动态分辨率。

  • 动态BatchSize

atc --framework=0 --soc_version=${soc_version}  --model=$HOME/mod/resnet50.prototxt --weight=$HOME/mod/resnet50.caffemodel --output=$HOME/mod/out/caffe_resnet50 --input_shape="data:-1,3,224,224"   --dynamic_batch_size="1,2,4,8" 

其中,“--input_shape ”中的“-1”表示设置动态BatchSize,具体支持哪些BatchSize由“--dynamic_batch_size”决定。

  • 动态分辨率
atc --framework=0 --soc_version=${soc_version}  --model=$HOME/mod/resnet50.prototxt --weight=$HOME/mod/resnet50.caffemodel --output=$HOME/mod/out/caffe_resnet50 --input_shape="data:1,3,-1,-1"   --dynamic_image_size="224,224;448,448"

其中,“--input_shape ”中的“-1,-1”表示设置动态分辨率,具体支持哪些分辨率由“--dynamic_image_size ”决定。

04 更多学习资源

[1]香橙派AIpro开源样例代码:https://gitee.com/ascend/EdgeAndRobotics

[2]昇腾文档中心:https://www.hiascend.com/zh/document

[3]香橙派AIpro学习资源一站式导航:https://www.hiascend.com/forum/thread-0285140173361311056-1-1.html

点击关注,第一时间了解华为云新鲜技术~

 文章来源地址https://www.toymoban.com/news/detail-848774.html

到了这里,关于基于香橙派AIpro将开源框架模型转换为昇腾模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Ray和vLLM构建70B+模型的开源RLHF全量训练框架

    背景 ChatGPT 已经问世一年+了,在训练 ChatGPT 中必不可少的一环是 RLHF 训练,目前开源社区已经有了不少 RLHF 训练框架比如,TRL, DeepSpeedChat 或者最近热门的 LLaMA Factory。这些框架往往是基于 ZeRO 等并行方式,将 RLHF 算法中的四个模型切片后放到同一个 GPU 上。在模型规模越来越

    2024年01月22日
    浏览(56)
  • 昇腾910b部署Chatglm3-6b进行流式输出【pytorch框架】NPU推理

    配套软件包Ascend-cann-toolkit和Ascend-cann-nnae 适配昇腾的Pytorch 适配昇腾的Torchvision Adapter 下载ChatGLM3代码 下载chatglm3-6b模型,或在modelscope里下载 每个人的服务器都不一样,在ChatGLM3/issues中别人只需要修改指定驱动,但是我的不行 删除模型文件包中的model.safetensors.index.json,否则加

    2024年01月21日
    浏览(74)
  • 三步实现BERT模型迁移部署到昇腾

    本文分享自华为云社区 《bert模型昇腾迁移部署案例》,作者:AI印象。 1. 基础镜像(由工具链小组统一给出D310P的基础镜像) From xxx 2. 安装mindspore 2.1.0,假定whl包和tar包已经下载到本地,下载地址:https://www.mindspore.cn/lite/docs/zh-CN/r2.0/use/downloads.html 3. 安装cann包6.3.RC2版本,假定

    2024年02月08日
    浏览(43)
  • 昇腾迁移丨4个TensorFlow模型训练案例解读

    本文分享自华为云社区《TensorFlow模型训练常见案例》,作者: 昇腾CANN。 基于TensorFlow的Python API开发的训练脚本默认运行在CPU/GPU/TPU上,为了使这些脚本能够利用昇腾AI处理器的强大算力,需要将其迁移到昇腾平台。 本期分享几个TensorFlow网络迁移到昇腾平台后执行失败或者执

    2024年02月05日
    浏览(35)
  • 【AI 开源框架】BMTools 是一能让语言模型使用扩展工具的开源仓库

    BMTools 是一能让语言模型使用扩展工具的开源仓库,其也是开源社区构建和共享工具的一个平台。在这个仓库中,您可以: (1) 通过编写 Python 函数轻松构建插件, (2) 使用外部的 ChatGPT-Plugins。 本项目受到开源项目LangChain的启发,针对开源工具的使用(例如ChatGPT-Plugins)进行了

    2024年02月08日
    浏览(51)
  • 【开源框架】Golang DAG 任务调度框架 Goflow 全解析——源代码模型、使用示例等

    Simply way to control goroutines execution order based on dependencies.

    2024年02月06日
    浏览(56)
  • 【大模型系列 06】LLaMA-7B/13B for PyTorch 昇腾迁移

    https://gitee.com/ascend/ModelZoo-PyTorch/tree/master/PyTorch/built-in/foundation/LLaMA-13B LLaMA是由Meta AI发布的大语言系列模型,完整的名字是Large Language Model Meta AI。LLaMA按照参数量的大小分为四个型号:LLaMA-7B、LLaMA-13B、LLaMA-30B与LLaMA-65B。LLaMA 模型的效果极好,LLaMA-13B在大多数基准测试中的表现

    2024年02月12日
    浏览(62)
  • 开源大模型框架llama.cpp使用C++ api开发入门

    llama.cpp是一个C++编写的轻量级开源类AIGC大模型框架,可以支持在消费级普通设备上本地部署运行大模型,以及作为依赖库集成的到应用程序中提供类GPT的功能。 以下基于llama.cpp的源码利用C++ api来开发实例demo演示加载本地模型文件并提供GPT文本生成。 CMakeLists.txt main.cpp 注:

    2024年02月03日
    浏览(57)
  • 基于React的开源低代码框架ToolJet

    什么是 ToolJet ? ToolJet 是一个开源低代码框架,可以用最少的工程工作量快速构建和部署内部工具。 ToolJet 的拖放式前端构建器允许您在几分钟内构建复杂的响应式前端。您还可以连接到数据源,如数据库( PostgreSQL 、 MongoDB 、 Elasticsearch 等)、 API 端点( ToolJet 支持导入 Op

    2024年02月09日
    浏览(36)
  • 基于java框架AI图像风格转换系统(springboot框架)开题答辩常规问题和如何回答

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年01月19日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包