常见的目标检测bbox标注格式

这篇具有很好参考价值的文章主要介绍了常见的目标检测bbox标注格式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Pascal VOC
bbox:[x_min, y_min, x_max, y_max]
格式:左上右下

COCO
bbox:[x_min, ymin, width, height]
格式:左上宽高

YOLO
bbox [x_center, y_center, width, height]
并进行数据规范化(normalized)
格式:中心坐标,宽高

YOLO转COCO

def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
    return y

COCO 转 YOLO

 def convert_box(size, box):
        # Convert COCO box to YOLO xywh box
        dw = 1. / size[0]
        dh = 1. / size[1]

        return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh

Pasic VOC 转 YOLO文章来源地址https://www.toymoban.com/news/detail-848805.html

def convert_box(size, box):
        # Convert VOC box to YOLO xywh box
        dw = 1. / size[0]
        dh = 1. / size[1]

        return ((box[0] + box[1]) / 2.0 * dw, (box[2] + box[3]) / 2.0 * dh , (box[1] - box[0]) * dw, (box[3] - box[2]) * * dh)

到了这里,关于常见的目标检测bbox标注格式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用LabelMe标注目标检测数据集并转换为COCO2017格式

    当你安装好labelme启动后,open dir开始标注,选择Create Rectangle 拖拽画框,然后选择类别(没有就直接输入会自动新建),标注好一幅图后点击next image会弹框提示保存json文件,保存即可。 当你将所有图像标注完后,点击Next Image是没有反应的(因为没有Next图了),此时直接x掉

    2024年02月11日
    浏览(49)
  • 目标检测标注文件yolov5(txt)格式转coco(json)格式详解及代码实现

    Reference:https://blog.csdn.net/qq_39686950/article/details/119153685 前言 正好自己做目标检测任务更换模型需要使用不同格式的标注文件,所以在网上找了半天类似博文,发现大多都只有代码或者解释不全,对新手不够友好,我在转换的过程中就debug了半天才转换成功,所以写下这篇博文

    2024年02月04日
    浏览(71)
  • YOLO目标检测——VOC2007数据集+已标注VOC格式标签下载分享

    VOC2007数据集是一个经典的目标检测数据集,该数据集包含了20个常见的目标类别,涵盖了人、动物、交通工具等多个领域,共同11220图片。使用lableimg标注软件标注,标注框质量高,标签格式为VOC格式(即xml标签),可以直接用于YOLO系列的目标检测。 数据集点击下载 :YOLO目

    2024年02月09日
    浏览(48)
  • YOLO目标检测——棉花病虫害数据集+已标注txt格式标签下载分享

    实际项目应用 :棉花病虫害防治 数据集说明 :棉花病虫害检测数据集,真实场景的高质量图片数据,数据场景丰富 标签说明 :使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测

    2024年02月09日
    浏览(47)
  • YOLO目标检测——口罩规范佩戴数据集+已标注xml和txt格式标签下载分享

    实际项目应用 :疫情防控、智能安检、公共场所监控场景下的大密度人群检测是否佩戴口罩 数据集说明 :人脸口罩规范佩戴数据集,真实场景的高质量图片数据,数据场景丰富,含有正确佩戴口罩、未正确佩戴口罩和没佩戴口罩图片 标签说明 :使用lableimg标注软件标注,标

    2024年02月09日
    浏览(57)
  • 数据集学习笔记(六):目标检测和图像分割标注软件介绍和使用,并转换成YOLO系列可使用的数据集格式

    labelImg是一个开源的图像标注工具,用于创建图像标注数据集。它提供了一个简单易用的界面,允许用户通过绘制边界框或者创建多边形来标注图像中的对象。它支持多种常见的标注格式,如Pascal VOC、YOLO和COCO等。 使用labelImg,用户可以加载图像文件夹,逐个标注图像中的对

    2024年02月10日
    浏览(55)
  • 迈向多模态AGI之开放世界目标检测 | 人工智能

    作者: 王斌 谢春宇 冷大炜 引言 目标检测是计算机视觉中的一个非常重要的基础任务,与常见的的图像分类/识别任务不同,目标检测需要模型在给出目标的类别之上,进一步给出目标的位置和大小信息,在CV三大任务(识别、检测、分割)中处于承上启下的关键地位。当前

    2024年02月16日
    浏览(46)
  • 人工智能 - 目标检测:发展历史、技术全解与实战

    本文全面回顾了目标检测技术的演进历程,从早期的滑动窗口和特征提取方法到深度学习的兴起,再到YOLO系列和Transformer的创新应用。通过对各阶段技术的深入分析,展现了计算机视觉领域的发展趋势和未来潜力。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架

    2024年02月05日
    浏览(57)
  • 人工智能TensorFlow PyTorch物体分类和目标检测合集【持续更新】

    1. 基于TensorFlow2.3.0的花卉识别 基于TensorFlow2.3.0的花卉识别Android APP设计_基于安卓的花卉识别_lilihewo的博客-CSDN博客 2. 基于TensorFlow2.3.0的垃圾分类 基于TensorFlow2.3.0的垃圾分类Android APP设计_def model_load(img_shape=(224, 224, 3)_lilihewo的博客-CSDN博客   3. 基于TensorFlow2.3.0的果蔬识别系统的

    2024年02月09日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包