关于
大规模数据收集和注释的成本通常使得将机器学习算法应用于新任务或数据集变得异常昂贵。规避这一成本的一种方法是在合成数据上训练模型,其中自动提供注释。尽管它们很有吸引力,但此类模型通常无法从合成图像推广到真实图像,因此需要域适应算法来操纵这些模型,然后才能成功应用。现有的方法要么侧重于将表示从一个域映射到另一个域,要么侧重于学习提取对于提取它们的域而言不变的特征。然而,通过只关注在两个域之间创建映射或共享表示,他们忽略了每个域的单独特征。域分离网络可以实现对每个域的独特之处进行特征建模,,同时进行模型域不变特征的提取。
参考文章: https://arxiv.org/abs/1608.06019
工具
方法实现
数据集定义
import torch.utils.data as data
from PIL import Image
import os
class GetLoader(data.Dataset):
def __init__(self, data_root, data_list, transform=None):
self.root = data_root
self.transform = transform
f = open(data_list, 'r')
data_list = f.readlines()
f.close()
self.n_data = len(data_list)
self.img_paths = []
self.img_labels = []
for data in data_list:
self.img_paths.append(data[:-3])
self.img_labels.append(data[-2])
def __getitem__(self, item):
img_paths, labels = self.img_paths[item], self.img_labels[item]
imgs = Image.open(os.path.join(self.root, img_paths)).convert('RGB')
if self.transform is not None:
imgs = self.transform(imgs)
labels = int(labels)
return imgs, labels
def __len__(self):
return self.n_data
模型搭建
import torch.nn as nn
from functions import ReverseLayerF
class DSN(nn.Module):
def __init__(self, code_size=100, n_class=10):
super(DSN, self).__init__()
self.code_size = code_size
##########################################
# private source encoder
##########################################
self.source_encoder_conv = nn.Sequential()
self.source_encoder_conv.add_module('conv_pse1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5,
padding=2))
self.source_encoder_conv.add_module('ac_pse1', nn.ReLU(True))
self.source_encoder_conv.add_module('pool_pse1', nn.MaxPool2d(kernel_size=2, stride=2))
self.source_encoder_conv.add_module('conv_pse2', nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5,
padding=2))
self.source_encoder_conv.add_module('ac_pse2', nn.ReLU(True))
self.source_encoder_conv.add_module('pool_pse2', nn.MaxPool2d(kernel_size=2, stride=2))
self.source_encoder_fc = nn.Sequential()
self.source_encoder_fc.add_module('fc_pse3', nn.Linear(in_features=7 * 7 * 64, out_features=code_size))
self.source_encoder_fc.add_module('ac_pse3', nn.ReLU(True))
#########################################
# private target encoder
#########################################
self.target_encoder_conv = nn.Sequential()
self.target_encoder_conv.add_module('conv_pte1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5,
padding=2))
self.target_encoder_conv.add_module('ac_pte1', nn.ReLU(True))
self.target_encoder_conv.add_module('pool_pte1', nn.MaxPool2d(kernel_size=2, stride=2))
self.target_encoder_conv.add_module('conv_pte2', nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5,
padding=2))
self.target_encoder_conv.add_module('ac_pte2', nn.ReLU(True))
self.target_encoder_conv.add_module('pool_pte2', nn.MaxPool2d(kernel_size=2, stride=2))
self.target_encoder_fc = nn.Sequential()
self.target_encoder_fc.add_module('fc_pte3', nn.Linear(in_features=7 * 7 * 64, out_features=code_size))
self.target_encoder_fc.add_module('ac_pte3', nn.ReLU(True))
################################
# shared encoder (dann_mnist)
################################
self.shared_encoder_conv = nn.Sequential()
self.shared_encoder_conv.add_module('conv_se1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5,
padding=2))
self.shared_encoder_conv.add_module('ac_se1', nn.ReLU(True))
self.shared_encoder_conv.add_module('pool_se1', nn.MaxPool2d(kernel_size=2, stride=2))
self.shared_encoder_conv.add_module('conv_se2', nn.Conv2d(in_channels=32, out_channels=48, kernel_size=5,
padding=2))
self.shared_encoder_conv.add_module('ac_se2', nn.ReLU(True))
self.shared_encoder_conv.add_module('pool_se2', nn.MaxPool2d(kernel_size=2, stride=2))
self.shared_encoder_fc = nn.Sequential()
self.shared_encoder_fc.add_module('fc_se3', nn.Linear(in_features=7 * 7 * 48, out_features=code_size))
self.shared_encoder_fc.add_module('ac_se3', nn.ReLU(True))
# classify 10 numbers
self.shared_encoder_pred_class = nn.Sequential()
self.shared_encoder_pred_class.add_module('fc_se4', nn.Linear(in_features=code_size, out_features=100))
self.shared_encoder_pred_class.add_module('relu_se4', nn.ReLU(True))
self.shared_encoder_pred_class.add_module('fc_se5', nn.Linear(in_features=100, out_features=n_class))
self.shared_encoder_pred_domain = nn.Sequential()
self.shared_encoder_pred_domain.add_module('fc_se6', nn.Linear(in_features=100, out_features=100))
self.shared_encoder_pred_domain.add_module('relu_se6', nn.ReLU(True))
# classify two domain
self.shared_encoder_pred_domain.add_module('fc_se7', nn.Linear(in_features=100, out_features=2))
######################################
# shared decoder (small decoder)
######################################
self.shared_decoder_fc = nn.Sequential()
self.shared_decoder_fc.add_module('fc_sd1', nn.Linear(in_features=code_size, out_features=588))
self.shared_decoder_fc.add_module('relu_sd1', nn.ReLU(True))
self.shared_decoder_conv = nn.Sequential()
self.shared_decoder_conv.add_module('conv_sd2', nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5,
padding=2))
self.shared_decoder_conv.add_module('relu_sd2', nn.ReLU())
self.shared_decoder_conv.add_module('conv_sd3', nn.Conv2d(in_channels=16, out_channels=16, kernel_size=5,
padding=2))
self.shared_decoder_conv.add_module('relu_sd3', nn.ReLU())
self.shared_decoder_conv.add_module('us_sd4', nn.Upsample(scale_factor=2))
self.shared_decoder_conv.add_module('conv_sd5', nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3,
padding=1))
self.shared_decoder_conv.add_module('relu_sd5', nn.ReLU(True))
self.shared_decoder_conv.add_module('conv_sd6', nn.Conv2d(in_channels=16, out_channels=3, kernel_size=3,
padding=1))
def forward(self, input_data, mode, rec_scheme, p=0.0):
result = []
if mode == 'source':
# source private encoder
private_feat = self.source_encoder_conv(input_data)
private_feat = private_feat.view(-1, 64 * 7 * 7)
private_code = self.source_encoder_fc(private_feat)
elif mode == 'target':
# target private encoder
private_feat = self.target_encoder_conv(input_data)
private_feat = private_feat.view(-1, 64 * 7 * 7)
private_code = self.target_encoder_fc(private_feat)
result.append(private_code)
# shared encoder
shared_feat = self.shared_encoder_conv(input_data)
shared_feat = shared_feat.view(-1, 48 * 7 * 7)
shared_code = self.shared_encoder_fc(shared_feat)
result.append(shared_code)
reversed_shared_code = ReverseLayerF.apply(shared_code, p)
domain_label = self.shared_encoder_pred_domain(reversed_shared_code)
result.append(domain_label)
if mode == 'source':
class_label = self.shared_encoder_pred_class(shared_code)
result.append(class_label)
# shared decoder
if rec_scheme == 'share':
union_code = shared_code
elif rec_scheme == 'all':
union_code = private_code + shared_code
elif rec_scheme == 'private':
union_code = private_code
rec_vec = self.shared_decoder_fc(union_code)
rec_vec = rec_vec.view(-1, 3, 14, 14)
rec_code = self.shared_decoder_conv(rec_vec)
result.append(rec_code)
return result
模型训练
import random
import os
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import numpy as np
from torch.autograd import Variable
from torchvision import datasets
from torchvision import transforms
from model_compat import DSN
from data_loader import GetLoader
from functions import SIMSE, DiffLoss, MSE
from test import test
######################
# params #
######################
source_image_root = os.path.join('.', 'dataset', 'mnist')
target_image_root = os.path.join('.', 'dataset', 'mnist_m')
model_root = 'model'
cuda = True
cudnn.benchmark = True
lr = 1e-2
batch_size = 32
image_size = 28
n_epoch = 100
step_decay_weight = 0.95
lr_decay_step = 20000
active_domain_loss_step = 10000
weight_decay = 1e-6
alpha_weight = 0.01
beta_weight = 0.075
gamma_weight = 0.25
momentum = 0.9
manual_seed = random.randint(1, 10000)
random.seed(manual_seed)
torch.manual_seed(manual_seed)
#######################
# load data #
#######################
img_transform = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
dataset_source = datasets.MNIST(
root=source_image_root,
train=True,
transform=img_transform
)
dataloader_source = torch.utils.data.DataLoader(
dataset=dataset_source,
batch_size=batch_size,
shuffle=True,
num_workers=8
)
train_list = os.path.join(target_image_root, 'mnist_m_train_labels.txt')
dataset_target = GetLoader(
data_root=os.path.join(target_image_root, 'mnist_m_train'),
data_list=train_list,
transform=img_transform
)
dataloader_target = torch.utils.data.DataLoader(
dataset=dataset_target,
batch_size=batch_size,
shuffle=True,
num_workers=8
)
#####################
# load model #
#####################
my_net = DSN()
#####################
# setup optimizer #
#####################
def exp_lr_scheduler(optimizer, step, init_lr=lr, lr_decay_step=lr_decay_step, step_decay_weight=step_decay_weight):
# Decay learning rate by a factor of step_decay_weight every lr_decay_step
current_lr = init_lr * (step_decay_weight ** (step / lr_decay_step))
if step % lr_decay_step == 0:
print 'learning rate is set to %f' % current_lr
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr
return optimizer
optimizer = optim.SGD(my_net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
loss_classification = torch.nn.CrossEntropyLoss()
loss_recon1 = MSE()
loss_recon2 = SIMSE()
loss_diff = DiffLoss()
loss_similarity = torch.nn.CrossEntropyLoss()
if cuda:
my_net = my_net.cuda()
loss_classification = loss_classification.cuda()
loss_recon1 = loss_recon1.cuda()
loss_recon2 = loss_recon2.cuda()
loss_diff = loss_diff.cuda()
loss_similarity = loss_similarity.cuda()
for p in my_net.parameters():
p.requires_grad = True
#############################
# training network #
#############################
MNIST数据重建/共有部分特征/私有数据特征可视化
文章来源:https://www.toymoban.com/news/detail-848840.html
MNIST_m数据重建/共有部分特征/私有数据特征可视化
代码获取
相关问题和项目开发,欢迎私信交流和沟通。文章来源地址https://www.toymoban.com/news/detail-848840.html
到了这里,关于【域适应】基于域分离网络的MNIST数据10分类典型方法实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!