Opencv | 基于像素的基础操作 & 逻辑运算

这篇具有很好参考价值的文章主要介绍了Opencv | 基于像素的基础操作 & 逻辑运算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一. OpenCV 基于像素的基础操作

img = cv.imread("sky.png",-1)
print(img.size)  # 750000
print(img.shape)  # (500, 500, 3)
print(img.dtype)  # uint8:无符号的整数8位,即(0-255)

1 cv.item( ) 获取图像某个位置的像素值

	cv.item( ) 
	作用:
		一次只能查看一个通道某个点
	【注意】
		读取图像格式为BGR

2. cv. itemset( ) 修改图像某个位置的像素值

	cv. itemset( )
	作用:
		一次只能修改一个通道某个个点的像素值
	【注意】
		读取图像格式为BGR

3. cv.split( ) / cv.merge( ) 通道的分割与合并

	cv.split ( )  分割图像的通道
	cv.merge ( )  融合多个通道

4. cv.copyMakeBorder ( ) 添加边框

	cv.copyMakeBorder(src, top, bottom, left, right, borderType, dst=None, value=None)
	参数:
		src:输入的图片
		top/bottom/left/right:相应方向上的边框宽度
		borderType:
			要添加边框的类型,具体有:
				cv.BORDER_REPLICATE:使用最边界的像素值代替
				cv.BORDER_REFLECT:添加的边框像素将是边界元素的镜面反射
				cv.BORDER_REFLECT_101/cv.BORDER_DEFAULT:边界反射,边界像素不保留
				cv.BORDER_WRAP:看例子
				cv.BORDER_CONSTANT:添加的边界框像素值为常数(需要额外再给定一个参数)
		dst:输出图像;Python接口一般不用这个参数
		value:如果borderType为cv.BORDER_CONSTANT时,需要填充的常数值

5. cv.addWeighted ( ) 图像融合 / 权重和

	cv2.addWeighted(src1,alpha,src2.beta,gamma)
	参数:
		alpha:src1的权重
		beta:src2的权重
		gamma:偏置项
	非官方:
		加权和
	相当于:
		w1 * x1 + w2 * x2 + b
	注意:
		有偏置项

6. cv.add ( ) 加法操作

	两张图片相加,shape必须相同
	
	图片对应位置相加,如果相加后出现值大于255的情况,统一置为255
		解决方法:
		1. 相加图片权重相同
		2. 相加图片权重不同

7. cv.subtract ( ) 减法操作

	对应位置相减,如果小于0,统一置为0

8. cv.multiply ( ) 乘法操作

	对应位置相乘,如果大于255,统一置为255

9. cv.divide ( ) 除法操作

	对应位置相除,如果小于0,统一置为0

二. OpenCV 基于像素的逻辑运算

1. cv.bitwise_not ( )按位非操作

	图像位运算,对图像的每个像素值进行”非”操作,即:dst=np.uint8(~src)

2. cv.bitwise_and ( ) 按位与操作

	图像位运算,对两个图像的每个像素值之间进行”与”操作,即: dst=np.uint8(src1 & src2)

3. cv.bitwise_or ( ) 按位或操作

	图像位运算,对两个图像的每个像素值之间进行”或”操作,即: dst=np.uint8(src1 | src2)

4. cv.bitwise_xor ( ) 按位异或操作

	图像位运算,对两个图像的每个像素值之间进行”异或”操作,即: dst=np.uint8(src1 ^ src2)

感谢阅读🌼
如果喜欢这篇文章,记得点赞👍和转发🔄哦!
有任何想法或问题,欢迎留言交流💬,我们下次见!
本文相关代码存放位置
    【Opencv基于像素值的计算
    【Opencv 基于像素值的逻辑运算

祝愉快🌟!文章来源地址https://www.toymoban.com/news/detail-848895.html


到了这里,关于Opencv | 基于像素的基础操作 & 逻辑运算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++结合OpenCV:图像的像素处理基础

    像素是图像构成的基本单位,像素处理是图像处理的基本操作,可以通过位置索引的形式对图像内的元素进行访问、处理。 二值图像: 是一种特殊的灰度图像,在OPENCV中,将黑定义为0,255定义为白。 在OPENCV中,二值图像/灰度图像以二维数组形式进行存放彩色图像以三维数组

    2024年01月16日
    浏览(40)
  • opencv-06 使用numpy.array 操作图片像素值

    numpy.array 提供了 item()和 itemset()函数 来访问和修改像素值,而且这两个函数都是经过 优化处理的,能够更大幅度地提高处理效率。在访问及修改像素点的值时,利用 numpy.array 提供的函数比直接使用索引要快得多,同时,这两个函数的可读性也更好。 可以将二值图像理解为特

    2024年02月16日
    浏览(44)
  • Opencv C++ 三、通过鼠标点击操作获取图像的像素坐标和像素值 四、生成一个简单的灰度图像。

    该操作首先需要创建一个头文件 在该头文件内进行编写: 而后双击打开源文件: 在源文件内编写: 执行该程序: 显示内容为上图,而后在右侧image窗口内任意点击一个位置: 就会显示该位置的坐标信息和像素值。 由于该图像为RBG彩色图像,不是单通道的灰度影像,不能显

    2024年04月28日
    浏览(40)
  • Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 视频图像处理基础操作 之 视频捕获/存储/提取/合成/合并

    目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 视频图像处理基础操作 之 视频捕获/存储/提取/合成/合并 一、简单介绍 二、视频处理流程和原理 三、视频的捕获和存储 四、提取视频中的某些帧 五、将图片合成为视频 六、多个视频合并 Python是一种跨平台的计算机程序设计

    2024年04月10日
    浏览(114)
  • OpenCV学习(五)——图像基本操作(访问图像像素值、图像属性、感兴趣区域ROI和图像边框)

    访问像素值并修改 访问图像属性 设置感兴趣区域(ROI) 分割和合并图像 5.1 访问像素值并修改 访问像素值 修改像素值 简单访问每个像素值并修改比较缓慢,一般不使用。 Numpy数组方法 array.item() 和 array.itemset() 被认为更好,但是它们始终返回标量。 更好的像素访问和编辑方

    2024年02月06日
    浏览(80)
  • opencv基础-38 形态学操作-闭运算(先膨胀,后腐蚀)cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

    闭运算是先膨胀、后腐蚀的运算,它有助于关闭前景物体内部的小孔,或去除物体上的小黑点,还可以将不同的前景图像进行连接。 例如,在图 8-17 中,通过先膨胀后腐蚀的闭运算去除了原始图像内部的小孔(内部闭合的闭运算),其中: 左图是原始图像。 中间的图是对原

    2024年02月14日
    浏览(73)
  • Opencv中的开运算和闭运算操作讲解(python实现)

    https://mydreamambitious.blog.csdn.net/article/details/125265431 开运算=腐蚀+膨胀(顺序不可颠倒) (1)为什么开运算可以去白噪点呢? 根据腐蚀的原理,使用一个给定大小的卷积核(结构单元)对图像进行卷积,操作是用卷积核(结构元素)B与其覆盖的二值图像A做“与”操作,如果结

    2024年02月07日
    浏览(38)
  • 【OpenCv • c++】形态学技术操作 —— 开运算与闭运算

    🚀 个人简介:CSDN「 博客新星 」TOP 10 , C/C++ 领域新星创作者 💟 作    者: 锡兰_CC ❣️ 📝 专    栏: 【OpenCV • c++】计算机视觉 🌈 若有帮助,还请 关注➕点赞➕收藏 ,不行的话我再努努力💪💪💪 在上一篇文章中,我

    2024年02月05日
    浏览(48)
  • Python 基于 OpenCV 视觉图像处理实战 之 图像相关的基本概念,以及图像的基础操作 一

    目录 Python 基于 OpenCV 视觉图像处理实战 之 图像相关的基本概念,以及图像的基础操作 一 一、简单介绍 二、图像相关的一些基本概念 1、像素 2、图像的构成 3、图像的格式 4、图像的位深和通道 三、OpenCV 的一些基本图像处理函数介绍 1、读取一幅画图像 2、显示图像 3、输出

    2024年04月11日
    浏览(118)
  • opencv -10 基础运算之 图像加权和(图像融合&图像修复&视频合成)

    所谓图像加权和,就是在计算两幅图像的像素值之和时,将每幅图像的权重考虑进来,可以用公式表示为: 式中,saturate()表示取饱和值(最大值)。图像进行加权和计算时,要求 src1 和 src2 必须大小、类型相同 ,但是对具体是什么类型和通道没有特殊限制。它们可以是任意

    2024年02月16日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包