在AI中无所不在的微积分

这篇具有很好参考价值的文章主要介绍了在AI中无所不在的微积分。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

       微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用:文章来源地址https://www.toymoban.com/news/detail-849170.html

  1. 优化算法:
             •梯度下降法:微积分中的导数被用来计算损失函数相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。梯度指出了函数值增加最快的方向,通过沿着负梯度方向更新权重,可以最小化损失函数并优化模型。
             •反向传播:在神经网络训练中,微积分的链式法则用于计算整个网络中每个参数对于最终损失函数的影响(偏导数),这一过程就是反向传播,它是训练深度学习模型的关键步骤。
  2. 函数建模:
             •在设计复杂非线性模型时,微积分帮助我们理解和操作函数的局部和全局特性,如凸性和凹性,这对于选择合适的优化策略和证明算法的收敛性至关重要。
  3. 特征映射和变换:
             •在图像处理和计算机视觉中,微积分及其扩展如偏微分方程用于图像滤波、边缘检测以及在卷积神经网络(CNNs)中的卷积操作,这些操作依赖于对图像像素邻域变化率(即导数)的理解。
  4. 概率论与统计推断:
             •微积分被用于计算概率分布函数的期望、方差以及其他统计量,这对于基于概率模型的人工智能算法(如贝叶斯网络、马尔可夫决策过程等)非常重要。
  5. 动态系统分析:
             •对于模拟和预测系统的动态行为,微积分中的微分方程和积分理论是必不可少的。例如,在强化学习中,连续状态空间下的动态规划常常涉及到微分方程的解。
  6. 路径规划和运动控制:
             •在机器人学和自动驾驶等领域,

到了这里,关于在AI中无所不在的微积分的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 微积分基本概念

    微分 函数的微分是指对 函数的局部变化的一种线性描述 。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。。对于函数 y = f ( x ) y = f(x) y = f ( x ) 的微分记作: d y = f ′ ( x ) d x d_y = f^{\\\'}(x)d_x d y ​ = f ′ ( x ) d x ​ 微分和导数的区别在于:

    2024年02月11日
    浏览(53)
  • 高等数学:微积分(下)

    导数说完了就可以说微分了。还是看图中过A点的切线,其与竖直虚线相交于C点。其中CD段的距离可以表示为 C D = k ⋅ Δ x CD = k cdot Delta x\\\\ C D = k ⋅ Δ x 这里的系数k是一个不为零的常数。原因很简单,假设这条切线与x轴的夹角为 θ theta θ (图中没有画出),那么根据三角函

    2024年02月12日
    浏览(56)
  • Matlab(数值微积分)

    目录 1.多项式微分与积分 1.1 微分 1.2 多项式微分 1.3 如何正确的使用Matlab? 1.3.1 Matlab表达多项式 1.3.2  polyval() 多项式求值  1.3.3 polyder()多项式微分 1.4 多项式积分 1.4.1 如何正确表达 1.4.2 polyint() 多项式积分 2.数值的微分与积分 2.1 数值微分  2.2 diff() 计算差值   2.3 误差的准确

    2024年02月09日
    浏览(36)
  • 微积分之八——级数整理

    几何级数(等比级数) ∑ n = 0 ∞ a q n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n + ⋅ ⋅ ⋅ ( a ≠ 0 ) s n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n − 1 = a ⋅ 1 − q n 1 − q { ∣ q ∣ 1 , 级 数 收 敛 ∣ q ∣ 1 , 级 数 发 散 q = 1 , S n = n a → ∞ 级 数 发 散 q = − 1 , S n = { a , n 为 奇 数 0 , n 为 偶 数 , 所

    2024年02月13日
    浏览(46)
  • MATLAB计算极限和微积分

    一.函数与极限 计算极限:lim(3*x^2/(2x+1)),x分别趋于0和1,代码如下: 结果分别为0和1: 1.计算双侧极限 计算极限:lim(3*x^2/(2x+1)),x分别趋于0和1,代码如下: 2.计算单侧极限 分别计算当x从左右两边趋向0时,1/x的极限值:  结果分别为负无穷和正无穷:  3.绘制极限图像 如下

    2024年02月19日
    浏览(44)
  • 11. 微积分 - 偏导数&方向导数

    Hi, 大家好。我是茶桁。 我们上节课学习了链式法则,本节课,我们要学习「偏导数」和「方向导数」。 偏导数在导论课里面也提到过。偏导数针对多元函数去讲的。 多元函数是什么,我们拿个例子来看: 多元函数: y =

    2024年02月10日
    浏览(54)
  • 微积分——求导数的链式法则

    链式法则 (Chain Rule)是微积分最强大的法则之一。这个法则处理的是 复合函数 (Composite Functions)的导数问题。 复合函数:  以另一种方式将两个函数组合起来的函数。正式定义: 令 f  和 g  分别为两个函数,函数( f 。 g )( x ) =  f  ( g ( x ))称为 f  与 g  的复合函数。复合函数

    2023年04月08日
    浏览(56)
  • MATLAB 之 符号微积分计算

    微积分的数值计算方法只能求出以数值表示的近似解,而无法得到以函数形式表示的解析解。 在 MATLAB 中,可以通过符号运算获得微积分的解析解。 MATLAB 中求函数极限的函数是 limit ,可用来求函数在指定点的极限值和左右极限值。 对于极限值为没有定义的极限,MATLAB 给出

    2024年02月09日
    浏览(49)
  • 【Python · PyTorch】线性代数 & 微积分

    本文采用Python及PyTorch版本如下: Python:3.9.0 PyTorch:2.0.1+cpu 本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。 线性代数是数学的一个分支,它的研究对象是向量、向量空间(线性空间)、线性变换及有限维的线性方程组。线性代数已被广泛地应用于

    2024年02月08日
    浏览(49)
  • 实验九 数据微积分与方程数值求解(matlab)

    实验九 数据微积分与方程数值求解 1.1实验目的 1.2实验内容 1.3流程图 1.4程序清单 1.5运行结果及分析 1.6实验的收获与体会 1,掌握求数值导数和数值积分的方法; 2,掌握代数方程数组求解的方法; 3,掌握多常微分方程数值求解的方法。 %% clc clear %% 1 clear;clc x=1;i=1; f=inline

    2024年02月12日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包