常见的排序算法的时间复杂度

这篇具有很好参考价值的文章主要介绍了常见的排序算法的时间复杂度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

常见的排序算法的时间复杂度

排序算法的时间复杂度通常取决于输入数据的规模(通常表示为n)。以下是一些常见排序算法及其平均、最好和最坏情况下的时间复杂度:

1、冒泡排序(Bubble Sort)
  • 平均时间复杂度:O(n^2)

  • 最好情况时间复杂度:O(n)

  • 最坏情况时间复杂度:O(n^2)

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

冒泡排序通过重复地遍历待排序序列,比较相邻元素的大小并交换它们的位置,直到没有元素需要交换为止。

在最坏情况下,即序列完全逆序时,冒泡排序需要进行n-1轮比较,每轮比较都需要遍历整个序列。因此,时间复杂度为O(n^2)。

在最好情况下,即序列已经有序时,冒泡排序只需要进行一轮比较,时间复杂度为O(n)。

平均情况下,冒泡排序的时间复杂度也是O(n^2)。

2、选择排序(Selection Sort)
  • 平均时间复杂度:O(n^2)

  • 最好情况时间复杂度:O(n^2)

  • 最坏情况时间复杂度:O(n^2)

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

选择排序在每一轮迭代中选择剩余元素中的最小(或最大)元素,并将其放到序列的起始位置。

选择排序的时间复杂度与输入序列的顺序无关,因为每轮迭代都需要遍历剩余元素以找到最小(或最大)元素。因此,无论最好、最坏还是平均情况,选择排序的时间复杂度都是O(n^2)。

3、插入排序(Insertion Sort)
  • 平均时间复杂度:O(n^2)
  • 最好情况时间复杂度:O(n)
  • 最坏情况时间复杂度:O(n^2)

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

插入排序通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

在最坏情况下,即序列完全逆序时,每次插入都需要将已排序的元素逐个向后移动,时间复杂度为O(n^2)。

在最好情况下,即序列已经有序时,插入排序只需要遍历一次序列即可完成,时间复杂度为O(n)。

平均情况下,插入排序的时间复杂度也是O(n^2),但通常比冒泡排序和选择排序稍快一些。

4、希尔排序(Shell Sort)
  • 平均时间复杂度:O(n log n) 到 O(n^2),取决于增量序列的选择
  • 最好情况时间复杂度:O(n log n)
  • 最坏情况时间复杂度:O(n^2)

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。

该算法由希尔(Donald Shell)于1959年提出,基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

具体算法步骤为:

  1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1。
  2. 按增量序列个数k,对序列进行k趟排序。
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对各子表进行直接插入排序。

希尔排序的时间复杂度与增量序列的选择有关,但通常情况下,希尔排序的时间复杂度较直接插入排序、冒泡排序、选择排序等方法有较大改进。在实际应用中,希尔排序是一种性能较好的排序算法。

5、归并排序(Merge Sort)
  • 平均时间复杂度:O(n log n)
  • 最好情况时间复杂度:O(n log n)
  • 最坏情况时间复杂度:O(n log n)

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

归并排序采用分治策略,将序列递归地分成两半,直到子序列长度为1(认为已有序),然后将有序子序列合并成一个有序序列。

归并排序的时间复杂度与输入序列的顺序无关,总是为O(n log n)。这是因为它将问题划分为两个大致相等的子问题,并将它们递归地解决,然后将结果合并。

6、快速排序(Quick Sort)
  • 平均时间复杂度:O(n log n)
  • 最好情况时间复杂度:O(n log n)
  • 最坏情况时间复杂度:O(n^2)(当输入数据已经排序或逆序时)

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

快速排序是一种高效的排序算法,它采用分治策略。通过选择一个基准元素,将序列划分为左右两部分,左边部分小于基准,右边部分大于基准,然后递归地对左右两部分进行排序。

在最好情况下,即每次划分都能将序列均匀分为两部分时,快速排序的时间复杂度为O(n log n)。

在最坏情况下,即输入序列已经有序或逆序时,快速排序退化为O(n^2)。

平均情况下,快速排序的时间复杂度为O(n log n),但由于划分的不均匀性,实际性能可能有所波动。

7、堆排序(Heap Sort)
  • 平均时间复杂度:O(n log n)
  • 最好情况时间复杂度:O(n log n)
  • 最坏情况时间复杂度:O(n log n)

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

堆排序利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。

堆排序包括两个主要阶段:建堆和堆调整排序。建堆的时间复杂度为O(n),堆调整排序的时间复杂度为O(nlogn),因此总的时间复杂度为O(nlogn)。

8、计数排序(Counting Sort)
  • 时间复杂度:O(n + k),其中k是整数的范围

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

计数排序(Counting Sort)是一种线性时间复杂度的排序算法,它的基本思想是将输入的数据值转化为键存储在额外开辟的数组空间中。计数排序不是基于比较的排序算法,其优势在于在对一定范围内的整数排序时,复杂度为O(n+k),其中n为输入元素个数,k为待排序列中最大的数。这使得计数排序快于任何比较排序算法。

计数排序要求输入的数据必须是有确定范围的整数。排序过程大致如下:

  1. 找出待排序数组中的最大和最小元素。
  2. 统计数组中每个值为i的元素出现的次数,存入数组count的第i项。
  3. 对所有的计数进行累加(从count中的第一个元素开始,每一项和前一项相加),为了直接求得元素的位置。
  4. 反向填充目标数组:将每个元素i放在新数组的第count[i]项,每放一个元素就将count[i]减去1。

需要注意的是,计数排序的空间复杂度为O(k),其中k为待排序列中最大的数。这意味着如果数据的范围很大,计数排序可能需要消耗大量的内存。因此,计数排序更适合于数据范围较小的情况,如排序0到100之间的数字。对于数据范围很大的数组或者非整数数据,计数排序可能不是最佳选择。

9、桶排序(Bucket Sort)
  • 时间复杂度:取决于数据分布和桶的数量,通常在O(n + n2/k)到O(n2)之间,其中k是桶的数量

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

桶排序(Bucket Sort)是一种分配式排序算法,它的工作原理是将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序),最后依次把各个桶中的记录列出来以得到有序序列。

桶排序的假设是:待排序的一组数均匀独立地分布在一个范围中,并将这一范围划分成几个子范围(即桶)。然后基于某种映射函数,将待排序列的关键字映射到第i个桶中(即桶数组B的下标i),那么该关键字就作为B[i]中的元素(每个桶B[i]都是一组大小为N/M的序列)。接着,对每个桶中的元素进行排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序),最后依次将各个桶中的元素取出,得到的就是有序序列。

桶排序的时间复杂度依赖于数据的分布和桶的数量。当数据均匀分布时,桶排序使用线性时间(Θ(n))。然而,如果数据分布不均匀,或者桶的数量选择不当,桶排序的性能可能会下降。此外,桶排序并不是比较排序,因此它不受O(n log n)下限的影响。

需要注意的是,桶排序在实际应用中可能受到一些限制。例如,如果数据的范围非常大,或者数据的分布极不均匀,那么可能需要大量的桶,这可能导致空间复杂度的增加。此外,桶排序还需要额外的空间来存储桶和桶中的元素,因此可能不适合内存有限的环境。

10、基数排序(Radix Sort)
  • 时间复杂度:O(d(n + k)),其中d是数字的位数,k是整数的范围

排序算法的时间复杂度为,问题小本,排序算法,算法,数据结构

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

基数排序的时间复杂度是线性的,为O(dn),其中d为数字的位数,n为待排序序列的长度。这是因为基数排序需要对每一位进行计数或分配,然后将它们收集起来。

需要注意的是,这些时间复杂度是理论上的,实际性能可能受到多种因素的影响,包括输入数据的特性、计算机系统的特性以及算法的具体实现方式。此外,对于某些特定的应用场景,可能还需要考虑空间复杂度等其他因素。

先赞后看,养成习惯!!!^ _ ^ ❤️ ❤️ ❤️
码字不易,大家的支持就是我的坚持下去的动力。点赞后不要忘了关注我哦!
文章来源地址https://www.toymoban.com/news/detail-849540.html

到了这里,关于常见的排序算法的时间复杂度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构:常见算法的时间复杂度汇总

    目录 顺序表 链表 二叉树 图(V是顶点个数,E是边的条数) 1.存储空间: 2.BFS和DFS的时间复杂度 3.最小生成树时间复杂度 4.最短路径时间复杂度 查找的平均查找长度(ASL)  排序 算法操作 时间复杂度 空间复杂度 描述 插入 O(n) 需要移动元素,移动结点的平均次数n/2 删除

    2024年02月10日
    浏览(56)
  • 时间复杂度为 O(nlogn) 的排序算法

    归并排序 归并排序遵循 分治 的思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后合并这些子问题的解来建立原问题的解,归并排序的步骤如下: 划分 :分解待排序的 n 个元素的序列成各具 n/2 个元素的两个子序列,将长数组的排序

    2024年02月07日
    浏览(34)
  • 时间复杂度为 O(n) 的排序算法

    大家好,我是 方圆 。本文介绍线性排序,即时间复杂度为 O(n) 的排序算法,包括桶排序,计数排序和基数排序,它们都不是基于比较的排序算法,大家重点关注一下这些算法的适用场景。 桶排序 桶排序是分治策略的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶

    2024年02月21日
    浏览(44)
  • 时间复杂度为 O(n^2) 的排序算法

    大家好,我是 方圆 。对于小规模数据,我们可以选用时间复杂度为 O(n 2 ) 的排序算法,因为时间复杂度并不代表实际代码的执行时间,而且它也省去了低阶、系数和常数,仅代表的增长趋势,所以在小规模数据情况下, O(n 2 ) 的排序算法可能会比 O(nlogn) 的排序算法执行效率

    2024年02月07日
    浏览(48)
  • 初阶算法(1):通过简单的排序算法来认识时间复杂度

      第一章    初阶算法(1):通过简单的排序算法来认识时间复杂度   第二章   初阶算法(2):进行详细地介绍插入排序的细节和时间复杂度   第三章   初阶算法(3):二分法的讲解与实现(C语言),以及二分不止光在有序数组中的应用  目录 系列文章目录 前言 一

    2024年02月12日
    浏览(38)
  • 时间复杂度接近O(n)的三种排序算法

    桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有 序的桶里,每个桶内的数据再单独进行排序。桶内排完序之后,再把每个桶内的数据按照顺序依次 取出,组成的序列就是有序的了。 桶排序对要排序数据的要求是非常苛刻的。 首先,要排序的数据需

    2024年02月14日
    浏览(45)
  • 排序算法大全集,从时间复杂度和空间复杂度上对各个排序算法进一步的分析和评估,从插入排序、交换排序、归并排序、基数排序到外部排序,通晓堆排序、希尔排序、快速排序等算法

    目录 1.基本概念和排序方法概述 排序方法的分类 2.插入排序 1.直接插入排序 2.折半插入排序 3.希尔排序 3.交换排序 1.冒泡排序 2.快速排序 3.简单选择排序 4.堆排序 4.归并排序 5.基数排序 6.外部排序 7.各类排序方法的综合比较 1.时间性能 2.空间性能 3.排序方法的稳定性能 4.关于

    2024年02月08日
    浏览(48)
  • 【算法与数据结构】5 常见的时间复杂度,你知道吗?

    欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 本文收录于算法与数据结构体系专栏, 本专栏 对于0基础者极为友好,欢迎与我一起完成算法与数据结构的从0到1的跨越 👉传送门:1 详解线性查找法 👉传送门:2 线性查找的优化 👉传送门

    2024年02月05日
    浏览(37)
  • 初阶算法(2):进行详细地介绍插入排序的细节和时间复杂度

     第一章 初阶算法(1):通过简单的排序算法来认识时间复杂度  第二章 初阶算法(2):进行详细地介绍插入排序的细节和复杂度  第三章 初阶算法(3):二分法的讲解与实现(C语言),以及二分不止光在有序数组中的应用  目录 系列文章目录 前言 一、插入排序的介

    2024年02月13日
    浏览(43)
  • 【数据结构】二叉树-堆(top-k问题,堆排序,时间复杂度)

     🌈个人主页: 秦jh__https://blog.csdn.net/qinjh_?spm=1010.2135.3001.5343 🔥 系列专栏: 《数据结构》https://blog.csdn.net/qinjh_/category_12536791.html?spm=1001.2014.3001.5482 ​​ 目录 堆排序 第一种  ​编辑 第二种  TOP-K问题 建堆的时间复杂度 向下调整建堆的时间复杂度:  向上调整建堆的时间

    2024年01月21日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包