0203逆矩阵-矩阵及其运算-线性代数

这篇具有很好参考价值的文章主要介绍了0203逆矩阵-矩阵及其运算-线性代数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、逆矩阵的定义、性质和求法

定义7 对于 n n n阶矩阵A,如果有一个 n n n阶矩阵B,使

A B = B A = E AB=BA=E AB=BA=E

则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。

定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 \vert A\vert \not = 0 A=0

证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A ∣ ∣ A − 1 ∣ = ∣ E ∣ = 1 ∴ ∣ A ∣ ≠ 0 证明:\\ A可逆,即有A^{-1},使得AA^{-1}=E\\ |AA^{-1}|=|A||A^{-1}|=|E|=1\\ \therefore |A|\not=0 证明:A可逆,即有A1,使得AA1=EAA1=A∣∣A1=E=1A=0

定理2 若 ∣ A ∣ ≠ 0 |A|\not=0 A=0,则矩阵A可逆,且
A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A
其中 A ∗ A^{*} A为矩阵A的伴随矩阵。

证明: 由例 10 知 A A ∗ = A ∗ A = ∣ A ∣ E ∵ ∣ A ∣ ≠ 0 ∴ A A ∗ ∣ A ∣ = A ∗ ∣ A ∣ A = E 按逆矩阵的定义,有矩阵 A 可逆,且 A − 1 = A ∗ ∣ A ∣ 证明:\\ 由例10知\\ AA^{*}=A^{*}A=|A|E\\ \because |A|\not=0\\ \therefore A\frac{A^{*}}{|A|}=\frac{A^{*}}{|A|}A=E\\ 按逆矩阵的定义,有矩阵A可逆,且\\ A^{-1}=\frac{A^{*}}{|A|} 证明:由例10AA=AA=AEA=0AAA=AAA=E按逆矩阵的定义,有矩阵A可逆,且A1=AA

∣ A ∣ = 0 |A|=0 A=0时,A称为奇异矩阵。哟路上面两定理知:A是可逆矩阵的充分必要条件是 ∣ A ∣ ≠ 0 |A|\not=0 A=0,即可逆矩阵就是非奇异矩阵。

推论 若 A B = E ( 或者 B A = E ) ,则 B = A − 1 AB=E(或者BA=E),则B=A^{-1} AB=E(或者BA=E),则B=A1

逆矩阵满足下述运算规律:

  1. 若A可逆,则 A − 1 A^{-1} A1亦可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A;
  2. 若A可逆,输入 λ ≠ 0 \lambda\not=0 λ=0,则 λ A \lambda A λA可逆,且 ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1}=\frac{1}{\lambda}A^{-1} (λA)1=λ1A1
  3. 若A、B为同阶矩阵且均可逆,则AB亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  4. 若A可逆,则 A T A^{T} AT可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1}=(A^{-1})^{T} (AT)1=(A1)T

当A可逆时,还可定义

A 0 = E , A − k = ( A − 1 ) k A^0=E,A^{-k}=(A^{-1})^k A0=E,Ak=(A1)k

其中k为正整数,这样当A可逆 λ , μ \lambda,\mu λ,μ为整数时,有

A λ A μ = A λ + μ , ( A λ ) μ = A λ μ A^{\lambda}A^{\mu}=A^{\lambda+\mu},(A^{\lambda})^{\mu}=A^{\lambda\mu} AλAμ=Aλ+μ,(Aλ)μ=Aλμ

例11 求二阶矩阵
A = ( a b c d ) A=\begin{pmatrix} a&b\\ c&d \end{pmatrix} A=(acbd)
的逆矩阵。
解: ∣ A ∣ = a d − b c A ∗ = ( d − b − c a ) 当 ∣ A ∣ ≠ 0 使 , A − 1 = 1 ∣ A ∣ A ∗ = 1 a d − b c ( d − b − c a ) 解:\\ |A|=ad-bc\\ A*=\begin{pmatrix} d&-b\\ -c&a \end{pmatrix}\\ 当|A|\not=0使, A^{-1}=\frac{1}{|A|}A^{*}\\ =\frac{1}{ad-bc}\begin{pmatrix} d&-b\\ -c&a \end{pmatrix} 解:A=adbcA=(dcba)A=0使,A1=A1A=adbc1(dcba)

二、逆矩阵的初步应用

可逆矩阵在线性代数中占有重要的地位,它的应用是多方面的,下面举几个例子。

例13 设
A = ( 1 2 3 2 2 1 3 4 3 ) , B = ( 2 1 5 3 ) , C = ( 1 3 2 0 3 1 ) A=\begin{pmatrix} 1&2&3\\ 2&2&1\\ 3&4&3\\ \end{pmatrix} ,B=\begin{pmatrix} 2&1\\ 5&3\\ \end{pmatrix} ,C=\begin{pmatrix} 1&3\\ 2&0\\ 3&1\\ \end{pmatrix}\\ A= 123224313 ,B=(2513),C= 123301
求矩阵X使其满足 A X B = C AXB=C AXB=C
解: 若 A − 1 , B − 1 存在,则 C = A A − 1 C B − 1 B 有 X = A − 1 C B − 1 ∣ A ∣ = 2 , ∣ B ∣ = 1 , 所以 A − 1 , B − 1 存在 A − 1 = ( 1 3 − 2 − 3 2 − 3 5 2 1 1 − 1 ) , B − 1 = ( 3 − 1 − 5 2 ) X = A − 1 C B − 1 = ( 1 3 − 2 − 3 2 − 3 5 2 1 1 − 1 ) ( 1 3 2 0 3 1 ) ( 3 − 1 − 5 2 ) = ( 1 1 0 − 2 0 2 ) ( 3 − 1 − 5 2 ) = ( − 2 1 10 − 4 − 10 4 ) 解:\\ 若A^{-1},B^{-1}存在,则\\ C=AA^{-1}CB^{-1}B\\ 有X=A^{-1}CB^{-1}\\ |A|=2,|B|=1,所以A^{-1},B^{-1}存在\\ A^{-1}=\begin{pmatrix} 1&3&-2\\ -\frac{3}{2}&-3&\frac{5}{2}\\ 1&1&-1 \end{pmatrix} ,B^{-1}=\begin{pmatrix} 3&-1\\ -5&2\\ \end{pmatrix}\\ X=A^{-1}CB^{-1}= \begin{pmatrix} 1&3&-2\\ -\frac{3}{2}&-3&\frac{5}{2}\\ 1&1&-1 \end{pmatrix} \begin{pmatrix} 1&3\\ 2&0\\ 3&1\\ \end{pmatrix} \begin{pmatrix} 3&-1\\ -5&2\\ \end{pmatrix}\\ =\begin{pmatrix} 1&1\\ 0&-2\\ 0&2 \end{pmatrix} \begin{pmatrix} 3&-1\\ -5&2\\ \end{pmatrix}\\ =\begin{pmatrix} -2&1\\ 10&-4\\ -10&4\\ \end{pmatrix} 解:A1,B1存在,则C=AA1CB1BX=A1CB1A=2,B=1,所以A1,B1存在A1= 12313312251 ,B1=(3512)X=A1CB1= 12313312251 123301 (3512)= 100122 (3512)= 21010144

例14 设
P = ( 1 2 1 4 ) , Λ = ( 1 0 0 2 ) , A P = P Λ , 求 A n P=\begin{pmatrix} 1&2\\ 1&4 \end{pmatrix} ,\Lambda=\begin{pmatrix} 1&0\\ 0&2 \end{pmatrix} ,AP=P\Lambda,求A^n P=(1124),Λ=(1002),AP=PΛ,An

解 : ∣ P ∣ = 2 p − 1 = 1 2 ( 4 − 2 − 1 1 ) A = P Λ P − 1 , A 2 = P Λ P − 1 P Λ P − 1 = P Λ 2 P − 1 , ⋯   , A n = P Λ n P − 1 Λ = = ( 1 0 0 2 ) , Λ 2 = = ( 1 0 0 2 2 ) , ⋯   , Λ n = ( 1 0 0 2 n ) A n = P Λ n P − 1 = ( 1 2 1 4 ) ( 1 0 0 2 n ) 1 2 ( 4 − 2 − 1 1 ) = ( 2 − 2 n 2 n − 1 2 − 2 n + 1 2 n + 1 − 1 ) 解:\\ |P|=2\\ p^{-1}=\frac{1}{2}\begin{pmatrix} 4&-2\\ -1&1\\ \end{pmatrix}\\ A=P\Lambda P^{-1},A^2=P\Lambda P^{-1}P\Lambda P^{-1}=P\Lambda^2 P^{-1},\cdots,A^{n}=P\Lambda^{n} P^{-1}\\ \Lambda==\begin{pmatrix} 1&0\\ 0&2 \end{pmatrix} ,\Lambda^2==\begin{pmatrix} 1&0\\ 0&2^2 \end{pmatrix} ,\cdots,\Lambda^n=\begin{pmatrix} 1&0\\ 0&2^n\\ \end{pmatrix}\\ A^n=P\Lambda^n P^{-1}=\begin{pmatrix} 1&2\\ 1&4 \end{pmatrix} \begin{pmatrix} 1&0\\ 0&2^n\\ \end{pmatrix} \frac{1}{2}\begin{pmatrix} 4&-2\\ -1&1\\ \end{pmatrix}\\ =\begin{pmatrix} 2-2^n&2^n-1\\ 2-2^{n+1}&2^{n+1}-1\\ \end{pmatrix}\\ :P=2p1=21(4121)A=PΛP1,A2=PΛP1PΛP1=PΛ2P1,,An=PΛnP1Λ==(1002),Λ2==(10022),,Λn=(1002n)An=PΛnP1=(1124)(1002n)21(4121)=(22n22n+12n12n+11)

ϕ ( x ) = a 0 + a 1 x + ⋯ + a m x m 为 x 的 m \phi(x)=a_0+a_1x+\cdots+a_mx^m为x的m ϕ(x)=a0+a1x++amxmxm次多项式,A为 n n n阶矩阵,记

ϕ ( A ) = a 0 E + a 1 A + ⋯ + a m A m \phi(A)=a_0E+a_1A+\cdots+a_mA^m ϕ(A)=a0E+a1A++amAm

ϕ ( A ) \phi(A) ϕ(A)为矩阵A的m次多项式。

矩阵 A k 、 A l 和 E A^k、A^l和E AkAlE都是可交换的,所以矩阵A的两个多项式 ϕ ( A ) 和 f ( A ) \phi(A)和f(A) ϕ(A)f(A)也是可交换的,即总有

ϕ ( A ) f ( A ) = f ( A ) ϕ ( A ) \phi(A)f(A)=f(A)\phi(A) ϕ(A)f(A)=f(A)ϕ(A)

从而A的几个多项式可以像数 x x x的多项式一样相乘或者分解因式。

  1. 如果 A = P Λ P − 1 ,则 A k = P Λ k P − 1 A=P\Lambda P^{-1},则A^k=P\Lambda^kP^{-1} A=PΛP1,则Ak=PΛkP1,从而 ϕ ( A ) = P a 0 E P − 1 + P a 1 Λ P − 1 + ⋯ + P a m Λ m P − 1 = P ϕ ( Λ ) P − 1 \phi(A)=Pa_0EP^{-1}+Pa_1\Lambda P^{-1}+\cdots+Pa_m\Lambda^mP^{-1}=P\phi(\Lambda)P^{-1} ϕ(A)=Pa0EP1+Pa1ΛP1++PamΛmP1=(Λ)P1

  2. 如果 Λ = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) \Lambda=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) Λ=diag(λ1,λ2,,λn)为对角矩阵,则 Λ k = d i a g ( λ 1 k , λ 2 k , ⋯   , λ n k ) \Lambda^k=diag(\lambda_1^k,\lambda_2^k,\cdots,\lambda_n^k) Λk=diag(λ1k,λ2k,,λnk),从而
    ϕ ( Λ ) = a 0 E + a 1 Λ + ⋯ + a m Λ m = d i a g ( ϕ ( λ 1 ) , ϕ ( λ 2 ) , ⋯   , ϕ ( λ n ) ) \phi(\Lambda)=a_0E+a_1\Lambda+\cdots+a_m\Lambda^m\\ =diag(\phi(\lambda_1),\phi(\lambda_2),\cdots,\phi(\lambda_n)) ϕ(Λ)=a0E+a1Λ++amΛm=diag(ϕ(λ1),ϕ(λ2),,ϕ(λn))

例15 设
P = ( − 1 1 1 1 0 2 1 1 − 1 ) , Λ = ( 1 2 − 3 ) , A P = P Λ P=\begin{pmatrix} -1&1&1\\ 1&0&2\\ 1&1&-1 \end{pmatrix} ,\Lambda=\begin{pmatrix} 1&&\\ &2&\\ &&-3 \end{pmatrix} ,AP=P\Lambda\\ P= 111101121 ,Λ= 123 ,AP=PΛ
ϕ ( A ) = A 3 + 2 A 2 − 3 A \phi(A)=A^3+2A^2-3A ϕ(A)=A3+2A23A
解: ∣ P ∣ = 6 A = P Λ P − 1 ϕ ( A ) = P ϕ ( Λ ) P − 1 , ϕ ( Λ ) = d i a g ( ϕ ( λ 1 k ) , ϕ ( λ 2 ) k , ⋯   , ϕ ( λ n k ) ) ϕ ( 1 ) = 0 , ϕ ( 2 ) = 10 , ϕ ( − 3 ) = 0 ϕ ( A ) = P ϕ ( Λ ) P − 1 = ( − 1 1 1 1 0 2 1 1 − 1 ) ( 0 10 0 ) 1 ∣ P ∣ P ∗ 5 ( 1 0 1 0 0 0 1 0 1 ) 解:\\ |P|=6\\ A=P\Lambda P^{-1}\\ \phi(A)=P\phi(\Lambda) P^{-1},\phi(\Lambda)=diag(\phi(\lambda_1^k),\phi(\lambda_2)^k,\cdots,\phi(\lambda_n^k))\\ \phi(1)=0,\phi(2)=10,\phi(-3)=0\\ \phi(A)=P\phi(\Lambda)P^{-1}=\begin{pmatrix} -1&1&1\\ 1&0&2\\ 1&1&-1 \end{pmatrix} \begin{pmatrix} 0&&\\ &10&\\ &&0\\ \end{pmatrix} \frac{1}{|P|}P^*\\ 5\begin{pmatrix} 1&0&1\\ 0&0&0\\ 1&0&1\\ \end{pmatrix} 解:P=6A=PΛP1ϕ(A)=(Λ)P1,ϕ(Λ)=diag(ϕ(λ1k),ϕ(λ2)k,,ϕ(λnk))ϕ(1)=0ϕ(2)=10,ϕ(3)=0ϕ(A)=(Λ)P1= 111101121 0100 P1P5 101000101

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p39-44.

[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p10.文章来源地址https://www.toymoban.com/news/detail-849730.html

到了这里,关于0203逆矩阵-矩阵及其运算-线性代数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数中涉及到的matlab命令-第二章:矩阵及其运算

    目录 1,矩阵定义 2,矩阵的运算 3,方阵的行列式和伴随矩阵  4,矩阵的逆  5,克莱默法则  6,矩阵分块  矩阵与行列式的区别: (1)形式上行列式是数表加两个竖线,矩阵是数表加大括号或中括号; (2)行列式可计算得到一个值,矩阵不能; (3)两个行列式相加与两

    2024年02月08日
    浏览(51)
  • 【课后习题】 线性代数第六版第二章 矩阵及其运算 习题二

    习题二 1. 计算下列乘积: (1) ( 4 3 1 1 − 2 3 5 7 0 ) ( 7 2 1 ) left(begin{array}{rrr}4 3 1 \\\\ 1 -2 3 \\\\ 5 7 0end{array}right)left(begin{array}{l}7 \\\\ 2 \\\\ 1end{array}right) ⎝ ⎛ ​ 4 1 5 ​ 3 − 2 7 ​ 1 3 0 ​ ⎠ ⎞ ​ ⎝ ⎛ ​ 7 2 1 ​ ⎠ ⎞ ​ ; (2) ( 1 , 2 , 3 ) ( 3 2 1 ) (1,2,3)left(begin{array}{l}3 \\\\ 2 \\\\ 1end{ar

    2024年02月05日
    浏览(47)
  • 线性代数 | 矩阵运算 加减 数乘 矩阵的幂运算

    《线性代数》中会有较多陌生的概念,如矩阵的逆,线性相关线性无关等,具有一定的难度。因而本系列尽量会以不同于课本的视角去学习线性代数,有些可以做类比记忆的我们会去做一些类比记忆,比如矩阵的逆类比于我们数的除法,有一些比如线性相关和无关会尽量以几

    2024年02月04日
    浏览(50)
  • 线性代数2.2矩阵运算

    矩阵元素对应相加,显然只有同型矩阵才能相加 矩阵元素对应相减,显然只有同型矩阵才能相减 矩阵所有元素均有公因子,所有公因子朝外提一次 行列式提公因子:一行提一次 所有元素均有外提n次 与行列式乘法规则一致,行的每一个元素乘以列每一个元素,先相乘再相加

    2024年02月11日
    浏览(51)
  • 线性代数|分块矩阵的运算规则

    定理 1 设矩阵 A boldsymbol{A} A 与 B boldsymbol{B} B 的行数相同、列数相同,采用相同的分块法,有 A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , B = ( B 11 ⋯ B 1 r ⋮ ⋮ B s 1 ⋯ B s r ) boldsymbol{A} = begin{pmatrix} boldsymbol{A}_{11} cdots boldsymbol{A}_{1r} \\\\ vdots vdots \\\\ boldsymbol{A}_{s1} cdots boldsymbol{

    2024年02月07日
    浏览(49)
  • 【理解线性代数】(四)线性运算的推广与矩阵基础

    工业生产的发展趋势总是从单件生产到批量生产。科学技术研究也是一样,总是从简单计算到复合运算、批量运算。批量意味着生产能力、处理能力的提升。计算机从16位发展到64位,从单核发展到多核;计算机从CPU处理数据发展到GPU处理数据;大数据、人工智能领域的大模型

    2024年02月09日
    浏览(52)
  • 宋浩线性代数笔记(二)矩阵及其性质

    更新线性代数第二章——矩阵,本章为线代学科最核心的一章,知识点多而杂碎,务必仔细学习。 重难点在于: 1.矩阵的乘法运算 2.逆矩阵、伴随矩阵的求解 3.矩阵的初等变换 4.矩阵的秩 (去年写的字,属实有点ugly,大家尽量看。。。) 首先来看一下考研数学一种对这一章

    2024年02月15日
    浏览(69)
  • 线性代数:矩阵运算(加减、数乘、乘法、幂、除、转置)

    目录 加减 数乘  矩阵与矩阵相乘  矩阵的幂 矩阵转置  方阵的行列式  方阵的行列式,证明:|AB| = |A| |B|        

    2024年01月22日
    浏览(51)
  • 矩阵运算之外积:解决线性代数问题的关键技巧

    线性代数是数学的一个分支,主要研究的是线性方程组和矩阵。线性方程组是指每个变量的方程都是线性的方程组,矩阵是一种数学结构,可以用来表示和解决线性方程组。在现实生活中,线性方程组和矩阵广泛应用于各个领域,如物理学、生物学、经济学、计算机科学等。

    2024年02月21日
    浏览(43)
  • 线性代数(魏福义)——第二章:矩阵及其向量特征

    矩阵 是一个 矩形数表 ,它是研究线性方程组、向量及其变换的重要工具 在数学中,矩阵是一个按照长方形排列的复数或实数集合,它是将一组 有序的数据 视为“ 整体量 ”进行 表述 和 运算 ,从而使问题的表述更加简洁。 2.1.1 矩阵 由 m × n 个数aij排成的 m行n列 的 数表

    2024年02月04日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包