LinkedList部分底层源码分析

这篇具有很好参考价值的文章主要介绍了LinkedList部分底层源码分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

JDK版本为1.8.0_271,以插入和删除元素为例,LinkedList部分源码如下:

//属性,底层结构为双向链表
transient Node<E> first; //记录第一个结点的位置
transient Node<E> last; //记录最后一个结点的尾元素
transient int size = 0; //记录链表的元素个数

//内部Node类定义如下
private static class Node<E> {
    E item; //节点数据
    Node<E> next; //下一个结点
    Node<E> prev; //前一个结点

    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

//构造器
public LinkedList() {
}

//方法:add()相关方法
public boolean add(E e) {
    linkLast(e); //默认把新元素链接到链表尾部
    return true;
}

// 尾部插入一个新节点
void linkLast(E e) {
    final Node<E> l = last; //用 l 记录原来的最后一个结点
    //创建新结点
    final Node<E> newNode = new Node<>(l, e, null);
    //现在的新结点是最后一个结点了
    last = newNode;
    //如果l==null,说明原来的链表是空的
    if (l == null)
        //那么新结点同时也是第一个结点
        first = newNode;
    else
        //否则把新结点链接到原来的最后一个结点的next中
        l.next = newNode;
    //元素个数增加
    size++;
    //修改次数增加
    modCount++;
}

//方法:获取get()相关方法
public E get(int index) {
    // 校验index是否越界,合法范围:[0,size)
    checkElementIndex(index);
    return node(index).item;
} 

//方法:插入add()相关方法
public void add(int index, E element) {
    checkPositionIndex(index); // 校验index是否越界,合法范围:[0,size)

    if (index == size)//如果index==size,链接到当前链表的尾部
        linkLast(element);
    else
        linkBefore(element, node(index));
}

// 查找index位置节点
Node<E> node(int index) {
    // assert isElementIndex(index);
	/*
	index < (size >> 1)采用二分思想,先将index与长度size的一半比较,如果index<size/2,就只从位置0往后遍历到位置index处;如果index>size/2,就只从位置size往前遍历到位置index处。这样可以减少一部
	分不必要的遍历。
	*/
    //如果index<size/2,就从前往后找目标结点
    if (index < (size >> 1)) {
        Node<E> x = first;
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } else {//否则从后往前找目标结点
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

//把新结点插入到[index]位置的结点succ前面,succ是[index]位置对应的结点
void linkBefore(E e, Node<E> succ) {
    // assert succ != null;
    final Node<E> pred = succ.prev; //[index]位置的前一个结点

    //新结点的prev是原来[index]位置的前一个结点
    //新结点的next是原来[index]位置的结点
    final Node<E> newNode = new Node<>(pred, e, succ);

    //[index]位置对应的结点的prev指向新结点
    succ.prev = newNode;

    //如果原来[index]位置对应的结点是第一个结点,那么现在新结点是第一个结点
    if (pred == null)
        first = newNode;
    else
        pred.next = newNode;//原来[index]位置的前一个结点的next指向新结点
    size++;
    modCount++;
}

//方法:remove()相关方法
public boolean remove(Object o) {
    //分o是否为空两种情况
    if (o == null) {
        //找到o对应的结点x
        for (Node<E> x = first; x != null; x = x.next) {
            if (x.item == null) {
                unlink(x);//删除x结点
                return true;
            }
        }
    } else {
        //找到o对应的结点x
        for (Node<E> x = first; x != null; x = x.next) {
            if (o.equals(x.item)) {
                unlink(x);//删除x结点
                return true;
            }
        }
    }
    return false;
}
// 将节点x从链表中取下
E unlink(Node<E> x) {//x是要被删除的结点
    // assert x != null;
    final E element = x.item;//被删除结点的数据
    final Node<E> next = x.next;//被删除结点的下一个结点
    final Node<E> prev = x.prev;//被删除结点的上一个结点

    //如果被删除结点的前面没有结点,说明被删除结点是第一个结点
    if (prev == null) {
        //那么被删除结点的下一个结点变为第一个结点
        first = next;
    } else {//被删除结点不是第一个结点
        //被删除结点的上一个结点的next指向被删除结点的下一个结点
        prev.next = next;
        //断开被删除结点与上一个结点的链接
        x.prev = null;//使得GC回收
    }

    //如果被删除结点的后面没有结点,说明被删除结点是最后一个结点
    if (next == null) {
        //那么被删除结点的上一个结点变为最后一个结点
        last = prev;
    } else {//被删除结点不是最后一个结点
        //被删除结点的下一个结点的prev执行被删除结点的上一个结点
        next.prev = prev;
        //断开被删除结点与下一个结点的连接
        x.next = null;//使得GC回收
    }
    //把被删除结点的数据也置空,使得GC回收
    x.item = null;
    //元素个数减少
    size--;
    //修改次数增加
    modCount++;
    //返回被删除结点的数据
    return element;
}

// 删除index位置的节点
public E remove(int index) { //index是要删除元素的索引位置
    // 校验index范围
    checkElementIndex(index);
    // 将节点x从链表中取下
    return unlink(node(index));
}

// 插入新节点链表头结点
public void addFirst(E e) {
    linkFirst(e);
}
// 链接节点到链表头
private void linkFirst(E e) {
    final Node<E> f = first;	// 获取链表头节点
    final Node<E> newNode = new Node<>(null, e, f);	// 新建节点
    first = newNode;	// 更新头结点
    if (f == null)	// 原链表为空时
        last = newNode;	// 将链表last指向新的头结点
    else	
        // 双端链表,将原头结点的prev指向新的头结点
        f.prev = newNode;
    size++;	// 链表节点数+1
    modCount++;	// 链表修改次数+1
}



// 获取链表的头结点的元素
public E getFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return f.item;
}
// addLast尾插法插入节点,getLast获取链表尾结点

插入删除结点的过程如图所示:

  • 只有1个元素的LinkedList

LinkedList部分底层源码分析,JavaSE,java

  • 包含4个元素的LinkedList

LinkedList部分底层源码分析,JavaSE,java

  • add(E e)方法

LinkedList部分底层源码分析,JavaSE,java

  • add(int index,E e)方法

LinkedList部分底层源码分析,JavaSE,java

  • remove(Object obj)方法

LinkedList部分底层源码分析,JavaSE,java

  • remove(int index)方法

LinkedList部分底层源码分析,JavaSE,java文章来源地址https://www.toymoban.com/news/detail-849773.html

到了这里,关于LinkedList部分底层源码分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入分析Java中的PriorityQueue底层实现与源码

    本文分享自华为云社区《滚雪球学Java(70):深入理解Java中的PriorityQueue底层实现与源码分析》,作者: bug菌。 @[toc] PriorityQueue是Java中一个非常常用的数据结构,它可以实现基于优先级的排序,常用于任务调度、事件处理等场景。本文将深入探讨Java中PriorityQueue的底层实现与源

    2024年03月19日
    浏览(35)
  • Java:ArrayList集合、LinkedList(链表)集合的底层原理及应用场景

    入队 出队 压栈(push),addFirst可以替换成push,官方专门为压栈写了push的API 出栈(pop),removeFirst可以替换成pop,官方专门为出栈写了pop的API

    2024年02月12日
    浏览(30)
  • 源码分析——LinkedList源码分析

    LinkedList 是一个实现了 List接口 和 Deque接口 的 双端链表 。 LinkedList底层的链表结构使它 支持高效的插入和删除操作 ,另外它实现了Deque接口,使得LinkedList类也具有队列的特性; LinkedList 不是线程安全的 ,如果想使LinkedList变成线程安全的,可以调用静态类 Collections类 中的 s

    2024年02月14日
    浏览(23)
  • LinkedHashMap部分底层源码解析

    JDK版本为1.8.0_271,LinkedHashMap继承了HashMap,LinkedHashMap在HashMap的基础上维护了一个双向链表,实现了可以根据插入顺序/访问顺序(accessOrder=false/true)访问Map集合。 关于HashMap的原理可以参考HashMap部分底层源码解析 部分属性: 内部定义的Entry如下: LinkedHashMap重写了HashMap中的

    2024年04月13日
    浏览(22)
  • Java中TreeSet的基本介绍,细节讨论,使用注意事项,常用方法,底层源码分析

    TreeSet 是 Java 中的一个有序集合实现,它基于红黑树数据结构来存储元素, 可以保持元素的自然顺序(默认情况下升序)或者根据自定义比较器来进行排序 。下面是关于 TreeSet 的基本介绍、细节讨论、使用注意事项、常用方法以及一些底层实现细节。 基本介绍: TreeSet 是

    2024年02月11日
    浏览(29)
  • 《JavaSE-第十七章》之LinkedList

    前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页:KC老衲爱尼姑的博客主页 博主的github,平常所写代码皆在于此 刷题求职神器 共勉:talk is cheap, show me the code 作者是爪哇岛的新手,水平很有限,如果发现错误,一定要及时告知作者

    2024年02月13日
    浏览(34)
  • Java集合之LinkedList源码篇

    ☆* o(≧▽≦)o *☆嗨~我是小奥🍹 📄📄📄个人博客:小奥的博客 📄📄📄CSDN:个人CSDN 📙📙📙Github:传送门 📅📅📅面经分享(牛客主页):传送门 🍹文章作者技术和水平有限,如果文中出现错误,希望大家多多指正! 📜 如果觉得内容还不错,欢迎点赞收藏关注哟!

    2024年01月16日
    浏览(31)
  • java源码----集合系列1----ArrayList,linkedList

    底层是一个object数组 Arraylist 是java里面Collection  标准的一个集合,其 底层是一个object数组 。当new一个空参的ArrayList的时候,会默认生成一个空数组。 Arraylist上限是 Integer.MAX_VALUE - 8(Integer.MAX_VALUE  =  2^31-1) ; 超过上限会报内存溢出 这里为什么是Integer.MAX_VALUE-8  ,源码上的解

    2024年02月03日
    浏览(32)
  • 源码分析——ConcurrentHashMap源码+底层数据结构分析

    1. 存储结构 Java 7 中 ConcurrentHashMap 的存储结构如上图,ConcurrnetHashMap 由很多个 Segment 组合,而每一个 Segment 是一个类似于 HashMap 的结构,所以每一个 HashMap 的内部可以进行扩容。但是 Segment 的个数一旦 初始化就不能改变 ,默认 Segment 的个数是 16 个,你也可以认为 ConcurrentH

    2024年02月13日
    浏览(38)
  • MyBatis底层源码分析

    🎄欢迎来到@边境矢梦°的csdn博文🎄 🎄本文主要梳理MyBatis底层源码分析 🎄 🌈我是边境矢梦°,一个正在为秋招和算法竞赛做准备的学生🌈 🎆喜欢的朋友可以关注一下 🫰🫰🫰 ,下次更新不迷路🎆 Ps: 月亮越亮说明知识点越重要 (重要性或者难度越大)🌑🌒🌓🌔🌕 

    2024年02月08日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包