1.逻辑回归简述
#encoding=utf8
import numpy as np
def sigmoid(t):
'''
完成sigmoid函数计算
:param t: 负无穷到正无穷的实数
:return: 转换后的概率值
:可以考虑使用np.exp()函数
'''
#********** Begin **********#
return 1.0/(1+np.exp(-t))
#********** End **********#
2.逻辑回归算法详解
from sklearn import datasets
from sklearn.datasets import load_iris
import numpy as np
import math
from sklearn.model_selection import train_test_split
from collections import Counter
from sklearn.linear_model import LogisticRegression #导入逻辑回归模型
#########Begin########
# 导入数据
iris = datasets.load_iris()
X= iris['data']
y = iris['target']
X = X[y!=2] # 筛选数据,只选择标签为0和1
y=y[y!=2]
# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 模型调用
model = LogisticRegression()
# 模型训练
model.fit(X_train, y_train)
# 数据预测
y_pred = model.predict(X_test)
# 结果打印
print("准确度:",model.score(X_test,y_test))
########End#########
3.sklearn逻辑回归 - 手写数字识别
from sklearn.linear_model import LogisticRegression
def digit_predict(train_image, train_label, test_image):
'''
实现功能:训练模型并输出预测结果
:param train_sample: 包含多条训练样本的样本集,类型为ndarray,shape为[-1, 8, 8]
:param train_label: 包含多条训练样本标签的标签集,类型为ndarray
:param test_sample: 包含多条测试样本的测试集,类型为ndarry
:return: test_sample对应的预测标签
'''
#************* Begin ************#
# 训练集变形
flat_train_image = train_image.reshape((-1, 64))
# 训练集标准化
train_min = flat_train_image.min()
train_max = flat_train_image.max()
flat_train_image = (flat_train_image-train_min)/(train_max-train_min)
# 测试集变形
flat_test_image = test_image.reshape((-1, 64))
# 测试集标准化
test_min = flat_test_image.min()
test_max = flat_test_image.max()
flat_test_image = (flat_test_image - test_min) / (test_max - test_min)
# 训练--预测
rf = LogisticRegression(C=4.0)
rf.fit(flat_train_image, train_label)
return rf.predict(flat_test_image)
#************* End **************#
4.逻辑回归案例 - 癌细胞精准识别
# -*- coding: utf-8 -*-
import numpy as np
import warnings
warnings.filterwarnings("ignore")
def sigmoid(x):
'''
sigmoid函数
:param x: 转换前的输入
:return: 转换后的概率
'''
return 1/(1+np.exp(-x))
def fit(x,y,eta=1e-3,n_iters=10000):
'''
训练逻辑回归模型
:param x: 训练集特征数据,类型为ndarray
:param y: 训练集标签,类型为ndarray
:param eta: 学习率,类型为float
:param n_iters: 训练轮数,类型为int
:return: 模型参数,类型为ndarray
'''
# 请在此添加实现代码 #
#********** Begin *********#
theta = np.zeros(x.shape[1])
i_iter = 0
while i_iter < n_iters:
gradient = (sigmoid(x.dot(theta))-y).dot(x)
theta = theta -eta*gradient
i_iter += 1
return theta
#********** End **********#
文章来源地址https://www.toymoban.com/news/detail-849840.html
文章来源:https://www.toymoban.com/news/detail-849840.html
到了这里,关于头歌实训-机器学习(逻辑回归)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!