Android+OnnxRuntime+Opencv+Onnx模型操作图片擦除多余内容

这篇具有很好参考价值的文章主要介绍了Android+OnnxRuntime+Opencv+Onnx模型操作图片擦除多余内容。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

今年来AI的发展非常迅速,在工业、医疗等等行业逐渐出现相应的解决方案,AI也逐渐成为各行业基础设施建设重要的一环,未来发展的大趋势,不过这也需要一个漫长的过程,需要很多技术型人才加入其中,除了工业设施的基础建设,在娱乐方向也有很多有趣的能力,不如图片/视频换背景、人像(图片/视频)动漫化、图片内容擦除等等。

今天我们来尝试操作一下使用图片内容擦除模型来实现相应的功能,首先来看看擦除模型:

1、advimman/lamaGitHub - advimman/lama: 🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

 2、fenglinglwb/MAT

GitHub - fenglinglwb/MAT: MAT: Mask-Aware Transformer for Large Hole Image Inpainting

3、 Picsart-AI-Research/MI-GA

GitHub - Picsart-AI-Research/MI-GAN: [ICCV 2023] MI-GAN: A Simple Baseline for Image Inpainting on Mobile Devices

还有很多,详情见MI-GAN: A Simple Baseline for Image Inpainting on Mobile Devices – IOPaint 

擦除模型基于图片物体兴趣区域(Rect)分割的mask结果,结合原图实现图片多余内容的擦除。 

其实在Opencv里也有图片修复功能(inpaint),简单的图片修复、多余内容擦除还是可以实现的,比如图片/视频擦除水印、一些小的划痕等等,但是对于大范围的内容擦除就无能为力了,虽然可以擦除效果还是太差,有很多像素异常内容。

物体分割模型也有很多: 

1、facebookresearch/segment-anything

GitHub - facebookresearch/segment-anything: The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.

 2、ChaoningZhang/MobileSAM

GitHub - ChaoningZhang/MobileSAM: This is the official code for MobileSAM project that makes SAM lightweight for mobile applications and beyond!

3、 SysCV/sam-hq

GitHub - SysCV/sam-hq: Segment Anything in High Quality [NeurIPS 2023]

4、 chongzhou96/EdgeSAM

GitHub - chongzhou96/EdgeSAM: Official PyTorch implementation of "EdgeSAM: Prompt-In-the-Loop Distillation for On-Device Deployment of SAM"

SEG-CPP是对于以上物体分割模型的C++实现,也对其进行模型onnx的转化,里面也实现了对相关模型的量化处理,是模型大小减小了数倍,为物体分割模型在移动设备上使用奠下基础。

要实现物体分割模型和物体擦除模型在Android上使用,我们需要文章来源地址https://www.toymoban.com/news/detail-849842.html

到了这里,关于Android+OnnxRuntime+Opencv+Onnx模型操作图片擦除多余内容的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)

    onnx 模型在 CPU 上进行推理,在conda环境中直接使用pip安装即可 想要 onnx 模型在 GPU 上加速推理,需要安装 onnxruntime-gpu 。有两种思路: 依赖于 本地主机 上已安装的 cuda 和 cudnn 版本 不依赖于 本地主机 上已安装的 cuda 和 cudnn 版本 要注意:onnxruntime-gpu, cuda, cudnn三者的版本要对

    2024年02月07日
    浏览(49)
  • TRT4-trt-integrate - 3 使用onnxruntime进行onnx的模型推理过程

    onnx是microsoft开发的一个中间格式,而onnxruntime简称ort是microsoft为onnx开发的推理引擎。 允许使用onnx作为输入进行直接推理得到结果。 建立一个InferenceSession,塞进去的是onnx的路径,实际运算的后端选用的是CPU 也可以选用cuda等等 之后就是预处理 session.run就是运行的inference过程

    2024年02月15日
    浏览(43)
  • C++模型部署:qt+yolov5/6+onnxruntime+opencv

    作者平时主要是写 c++ 库的,界面方面了解不多,也没有发现“美”的眼镜,界面有点丑,大家多包涵。 本次介绍的项目主要是通过 cmake 构建一个 基于 c++ 语言的,以 qt 为框架的,包含 opencv 第三方库在内的,跨平台的,使用 ONNX RUNTIME 进行前向推理的 yolov5/6 演示平台。文章

    2024年02月05日
    浏览(50)
  • Ubuntu环境下C++使用onnxruntime和Opencv进行YOLOv8模型部署

    目录 环境配置 系统环境 项目文件路径  文件环境  config.txt  CMakeLists.txt type.names  读取config.txt配置文件 修改图片尺寸格式 读取缺陷标志文件 生成缺陷随机颜色标识 模型推理 推理结果获取 缺陷信息还原并显示 总代码 Ubuntu18.04 onnxruntime-linux-x64 1.12.1:https://github.com/microsof

    2024年01月17日
    浏览(45)
  • 解决Opencv dnn模块无法使用onnx模型的问题(将onnx的动态输入改成静态)

    最近做人脸识别项目,想只用OpenCV自带的人脸检测和识别模块实现,使用OpenCV传统方法:Haar级联分类器人脸检测+LBPH算法人脸识别的教程已经有了,于是想着用OpenCV中的dnn模块来实现,dnn实现人脸检测也有(详细教程可见我的这篇博客https://blog.csdn.net/weixin_42149550/article/detai

    2024年02月05日
    浏览(44)
  • onnxruntime推理时切换CPU/GPU以及修改onnx输入输出为动态

    前言 onnx模型作为中间模型,相较于pytorch直接推理,是有加速度效果的,且推理代码简单,不需要load各种网络。最近某些项目因为显存不够,onnxruntime推理时切换CPU/GPU,实现某些模型在CPU上推理,某些在GPU上推理。 查了一些别人的文章发现很多人都说onnxruntime推理没法像py

    2024年02月12日
    浏览(54)
  • OpenCV DNN模块推理YOLOv5 ONNX模型方法

    本文档主要描述 python 平台,使用 opencv-python 深度神经网络模块 dnn ,推理 YOLOv5 模型的方法。 文档主要包含以下内容: opencv-python 模块的安装 YOLOv5 模型格式的说明 ONNX 格式模型的加载 图片数据的预处理 模型推理 推理结果后处理,包括 NMS , cxcywh 坐标转换为 xyxy 坐标等 关键方

    2024年02月16日
    浏览(54)
  • 【模型部署 01】C++实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

    深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。 以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下: 结论: GPU加速首选

    2024年02月06日
    浏览(56)
  • 【深度学习】【Opencv】【CPU】Python/C++调用onnx模型【基础】

    提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 OpenCV是一个基于BSD许可发行的跨平台计算机视觉和机器学习软件库(开源),可以运行在Linux、Windows、Android和Mac OS操作系统上。可以将pytorch中训练好的模型使用ONNX导出,再使用opencv中的dnn模块直接进行

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包