【神经网络】生成对抗网络GAN

这篇具有很好参考价值的文章主要介绍了【神经网络】生成对抗网络GAN。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

生成对抗网络GAN

欢迎访问Blog总目录!

1.学习链接

Generative Adversarial Networks

生成对抗网络(GAN) - 知乎 (zhihu.com)

深度学习----GAN(生成对抗神经网络)原理解析_gan神经网络-CSDN博客

图解 生成对抗网络GAN 原理 超详解_生成对抗网络gan图解-CSDN博客

2.GAN结构

GAN包含两个模型:

  • 生成模型(Generator):接收随机噪声,生成看起来真实的、与原始数据相似的实例。
  • 判别模型(Discrimintor):判断Generator生成的实例是真实的还是人为伪造的。(真实实例来源于数据集,伪造实例来源于生成模型)

最终得到效果极好的生成模型,其生成的实例真假难辨。

GAN的灵感来源于 “零和博弈” (完全竞争博弈),GAN就是通过生成网络G(Generator)和判别网络D(Discriminator)不断博弈,进而使G学习到数据的分布,即达到纳什均衡

【纳什均衡】博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。对于GAN,即生成模型 G 恢复了训练数据的分布(造出了和真实数据一模一样的样本),判别模型D判别不出来结果(乱猜),准确率为 50%(收敛)。这样双方网络利益均最大化,不再改变自己的策略(不再更新自己的权重)。
【神经网络】生成对抗网络GAN,算法语言,神经网络,生成对抗网络,人工智能

2.1.生成模型Generator

  • 输入: 数据集的某些向量信息,此处使用满足常见分布(高斯分布、均值分布等)的随机向量。
  • 输出: 符合像素大小的图片
  • 结构: 全连接神经网络或者反卷积网络。

【神经网络】生成对抗网络GAN,算法语言,神经网络,生成对抗网络,人工智能

2.2.判别模型Discrimintor

  • 输入: 伪造图片和数据集图片
  • 输出: 图片的真伪标签
  • 结构: 判别器模型(全连接网络、卷积网络等)
    【神经网络】生成对抗网络GAN,算法语言,神经网络,生成对抗网络,人工智能

2.3.伪代码

【神经网络】生成对抗网络GAN,算法语言,神经网络,生成对抗网络,人工智能

3.优缺点

3.1.优势

  • GAN采用的是一种无监督的学习方式训练,可以被广泛用在无监督学习和半监督学习领域
  • 模型只用到了反向传播,而不需要马尔科夫链

3.2.缺点

  • 难以学习离散数据,如文本

4.pytorch GAN

4.1.API

生成对抗网络 - PyTorch官方教程中文版 (panchuang.net)

4.2.GAN的搭建

绘制在upper_bound和lower_bound之间的一元二次方程画

4.2.1.结果

【神经网络】生成对抗网络GAN,算法语言,神经网络,生成对抗网络,人工智能

4.2.2.代码

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

torch.manual_seed(1)    # reproducible
np.random.seed(1)

# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001           # learning rate for generator
LR_D = 0.0001           # learning rate for discriminator
N_IDEAS = 5             # 噪声点个数
ART_COMPONENTS = 15     # 15个Y轴数据点
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])

# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()


def artist_works():     # painting from the famous artist (real target)
    a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
    paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
    paintings = torch.from_numpy(paintings).float()
    return paintings

G = nn.Sequential(                      # Generator
    nn.Linear(N_IDEAS, 128),            # random ideas (could from normal distribution)
    nn.ReLU(),
    nn.Linear(128, ART_COMPONENTS),     # making a painting from these random ideas
)

D = nn.Sequential(                      # Discriminator
    nn.Linear(ART_COMPONENTS, 128),     # receive art work either from the famous artist or a newbie like G
    nn.ReLU(),
    nn.Linear(128, 1),
    nn.Sigmoid(),                       # tell the probability that the art work is made by artist
)

opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)

plt.ion()   # something about continuous plotting

for step in range(10000):
    artist_paintings = artist_works()  # real painting from artist
    G_noise = torch.randn(BATCH_SIZE, N_IDEAS, requires_grad=True)  # random ideas\n
    G_paintings = G(G_noise)                    # fake painting from G (random ideas)
    prob_artist0 = D(artist_paintings)  # 判断真画
    prob_artist1 = D(G_paintings)  # 判断假画

    # D增加真画概率,减少伪画概率; 梯度下降法为减小误差,所以添加-号
    # D_loss越小,prob_artist0越大,prob_artist1越小
    D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
    opt_D.zero_grad()
    D_loss.backward(retain_graph=True)  # reusing computational graph
    opt_D.step()


    # 重新采样
    G_noise = torch.randn(BATCH_SIZE, N_IDEAS, requires_grad=True)  # random ideas\n
    G_paintings = G(G_noise)  # fake painting from G (random ideas)
    prob_artist1 = D(G_paintings)  # 判断假画

    # G_loss越小,prob_artist1越大
    G_loss = torch.mean(torch.log(1. - prob_artist1))
    opt_G.zero_grad()
    G_loss.backward()
    opt_G.step()


    if step % 50 == 0:  # plotting
        plt.cla()
        plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting', )
        plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
        plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')

        # D 的判断准确度=50%最优
        plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(),
                 fontdict={'size': 13})

        plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
        plt.ylim((0, 3));
        plt.legend(loc='upper right', fontsize=10);
        plt.draw();
        plt.pause(0.01)

plt.ioff()
plt.show()

4.3.示意图⭐️

【神经网络】生成对抗网络GAN,算法语言,神经网络,生成对抗网络,人工智能文章来源地址https://www.toymoban.com/news/detail-849855.html

到了这里,关于【神经网络】生成对抗网络GAN的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型11-pytorch搭建DCGAN模型,一种生成对抗网络GAN的变体实际应用,本文将具体介绍DCGAN模型的原理,并使用PyTorch搭建一个简单的DCGAN模型。我们将提供模型代码,并使用一些数据样例进行训练和测试。最后,我们将

    2024年02月08日
    浏览(57)
  • 适合小白学习的GAN(生成对抗网络)算法超详细解读

    “GANs are \\\'the coolest idea in deep learning in the last 20 years.\\\' ” --Yann LeCunn, Facebook’s AI chief   今天我们就来认识一下这个传说中被誉为过去20年来深度学习中最酷的想法——GAN。  GAN之父的主页: http://www.iangoodfellow.com/  GAN论文地址: https://arxiv.org/pdf/1406.2661.pdf 目录 前言  📢一、

    2024年02月02日
    浏览(42)
  • 神经网络学习笔记6——生成式AI绘画背后的的GAN与Diffusion初解

    AI绘画,目前AI领域里最有话题性的技术,上一个这么火的话题是swin transformer网络,而2022年8月Jason Allen凭借AI绘画作品《太空歌剧院》拿下科罗拉多州博览会美术竞赛一等奖,瞬间引爆社会争论。后来10月19日,Jasper.ai 宣布完成了 1.25 亿美元的A 轮融资,估值达到了 15 亿美金,

    2024年02月03日
    浏览(34)
  • 基于深度学习、机器学习,对抗生成网络,OpenCV,图像处理,卷积神经网络计算机毕业设计选题指导

    开发一个实时手势识别系统,使用卷积神经网络(CNN)和深度学习技术,能够识别用户的手势并将其映射到计算机操作,如控制游戏、音量调整等。这个项目需要涵盖图像处理、神经网络训练和实时计算等方面的知识。 利用深度学习模型,设计一个人脸识别系统,可以识别人

    2024年02月07日
    浏览(67)
  • 毕业设计:基于卷积神经网络的古诗词生成系统 人工智能

    目录  前言 设计思路       一、课题背景与意义       二、算法理论原理                2.1 深度学习                2.2 神经网络       三、检测的实现                3.1 数据集                3.2 实验环境搭建                3.3 模型训练 最后        📅大

    2024年04月12日
    浏览(42)
  • 【计算机视觉|生成对抗】生成对抗网络(GAN)

    本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题: Generative Adversarial Nets 链接:Generative Adversarial Nets (nips.cc) 我们提出了一个通过**对抗(adversarial)**过程估计生成模型的新框架,在其中我们同时训练两个模型: 一个生成模型G,捕获数据分布 一个判别模型

    2024年02月12日
    浏览(48)
  • 生成对抗网络 (GAN)

    生成对抗网络(Generative Adversarial Networks,GAN)是由Ian Goodfellow等人在2014年提出的一种深度学习模型。GAN由两部分组成:一个生成器(Generator)和一个判别器(Discriminator),它们通过对抗过程来训练,从而能够生成非常逼真的数据。 生成器(Generator) 生成器的任务是创建尽可

    2024年03月10日
    浏览(52)
  • 生成对抗网络----GAN

    ` GAN (Generative Adversarial Network) : 通过两个神经网络,即生成器(Generator)和判别器(Discriminator),相互竞争来学习数据分布。 { 生成器 ( G e n e r a t o r ) : 负责从随机噪声中学习生成与真实数据相似的数据。 判别器 ( D i s c r i m i n a t o r ) : 尝试区分生成的数据和真实数据。

    2024年02月20日
    浏览(43)
  • 生成式对抗网络GAN

    Generative Adversarial Nets 由伊恩·古德费洛(Ian J.Goodfellow)等人于2014年发表在Conference on Neural Information Processing Systems (NeurIPS)上。NeurIPS是机器学习和计算神经科学领域的顶级国际学术会议之一。 图像生成: 论文地址:styleGAN styleGAN2 图像生成是生成模型的基本问题,GAN相对先前的

    2024年01月16日
    浏览(35)
  • 了解生成对抗网络 (GAN)

            Yann LeCun将其描述为“过去10年来机器学习中最有趣的想法”。当然,来自深度学习领域如此杰出的研究人员的赞美总是对我们谈论的主题的一个很好的广告!事实上,生成对抗网络(简称GAN)自2014年由Ian J. Goodfellow和共同作者在《

    2024年02月12日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包