含风电-光伏-光热电站电力系统N-k安全优化调度模型

这篇具有很好参考价值的文章主要介绍了含风电-光伏-光热电站电力系统N-k安全优化调度模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 主要内容

2 部分程序

3 部分结果

4 下载链接


1 主要内容

该程序参考《光热电站促进风电消纳的电力系统优化调度》光热电站模型,主要做的是考虑N-k安全约束的含义风电-光伏-光热电站的电力系统优化调度模型,从而体现光热电站在调度灵活性以及经济性方面的优势。同时代码还考虑了光热电站对风光消纳的作用,对比了含义光热电站和不含光热电站下的弃风弃光问题,同时还对比了考虑N-k约束下的调度策略区别。以14节点和118节点算例为例,对模型进行了系统性的测试,复现效果良好,是学习N-k约束以及光热电站调度的必备程序!程序采用matlab+cplex(mosek/gurobi)进行求解,可以选择已经安装的求解器进行求解。

含风电-光伏-光热电站电力系统N-k安全优化调度模型,综合能源,优化调度,matlab,光热电站,N-k,安全调度,分布式电源,风光

  • 程序算例

含风电-光伏-光热电站电力系统N-k安全优化调度模型,综合能源,优化调度,matlab,光热电站,N-k,安全调度,分布式电源,风光

程序对于118节点系统采用了四个算例进行对比,14节点系统有3种算例对比,并增加了弃风量的对比程序。
  • 程序模型

含风电-光伏-光热电站电力系统N-k安全优化调度模型,综合能源,优化调度,matlab,光热电站,N-k,安全调度,分布式电源,风光

  • 程序亮点
  1. 采用光热电站模型,也是最近研究比较热的一个方向。
  2. 采用转移分布因子矩阵处理潮流问题,这也是很多文献中都采用的方法。​

2 部分程序

clc; clear; close all; % 关闭所有已打开的绘图窗口
%% 参数设定
NT = 24; % 时间范围
CoeffReseve_load = 0.03; 
CoeffReserve_VRE = 0.05; 
yita_TES = 0.98;  
yita_PB = 0.415;  
% 文章里Table 2的数据
Capacity_TES_CSP = 0; 
initial_TES_t0 = 0.5;  
initial_TES_t1 = 0.78;
TES_initial = 0.5;         
beta_Load = 3*10e3;  
    mpc = case14_1; % 载入数据 matpower 数据格式
%% 有功负荷 24h所有节点总的
%    mpc.load = [
%        2842.42  3020.2  3296.96  3444.44  3607.07  3891.91  4070.7  4295.95  4476.76  4661.61  4859.59  5077.77  ...
%        4717.17  4519.19  4301.01  3995.95  3703.03  3806.06  4037.37  4063.63  3721.21  3245.45  3097.97  2827.27
%    ]/6.3; 
​
   mpc.load = [
       683.42  792.2  896.96  1044.44  1087.07  1121.91  1200.7  1235.95  1326.76  1461.61  1489.59  1577.77  ...
       1417.17  1219.19  1101.01  1075.95  903.03  1186.06  1237.37  1463.63  1221.21  1005.45  827.97  807.27
    ]/2; 
​
​
    mpc.P_RE = [0.00   0.00   0.00   0.00   0.00   0.00   15.76   43.17   82.35   109.44   122.55   146.10   ...% PV
                126.66   86.05   60.05   52.82   25.78   4.28   0.00   0.00   0.00   0.00   0.00   0.00  
                100.26   133.95   147.28   134.11   170.52   159.44   138.55   72.83   58.83   73.37   79.90   80.54 ...  % Wind
                91.96   101.68   121.49   122.93   133.11   162.44   130.95   133.25   151.26   139.33   120.60   90.33
                ]*1; % 可再生能源 24小时数据(实际发电量)
%% 电网相关名称
    baseMVA = mpc.baseMVA;
    bus = mpc.bus;
    gen = mpc.gen;
    branch = mpc.branch;
    gencost = mpc.gencost;
    RE = mpc.RE;
    CSP = mpc.CSP;
    P_RE = mpc.P_RE;
​
N = length(bus(:,1));      % 网络中所有节点数
N_Br = length(branch(:,1));% 线路数
N_Gen = length(gen(:,1));  % 火电发电机组数
N_RE = length(RE(:,1));    % 可再生能源节点机组数
N_CSP = length(CSP(:,1));  % CSP发电站数
​
% 常规机组相关数据提取, 取数据矩阵中的列向量 和功率有功的项,均需标幺值化,以便运算和求解
P_Gen_max = gen(:,9)/baseMVA; 
P_Gen_min = gen(:,10)/baseMVA; 
type_Gen = gen(:,22); 
P_Gen_up = gen(:,23) /baseMVA;  
P_Gen_down = gen(:,24) /baseMVA;
T_Gen_min_on = gen(:,25); 
T_Gen_min_off = gen(:,26); 
c_ST_g = gen(:,28);
c_G_g = gen(:,30); 
​
% CSP机组相关数据提取
P_CSP_max = CSP(:,9)/baseMVA; 
P_CSP_min = CSP(:,10)/baseMVA; 
P_CSP_up = CSP(:,23)/baseMVA;   
P_CSP_down = CSP(:,24)/baseMVA; 
T_CSP_min_on = CSP(:,25); 
T_CSP_min_off = CSP(:,26);
c_CSP_g = CSP(:,30);       
​
PtCSP_fore = [ % 可用的太阳能热功率向量 
    0.00   0.00   0.00   0.00   0.00   0.00   190.57   390.57   790.57 990.57   1390.57   1891.03 ...
    2111.64   2200.92   2202.36   2118.26   1895.37   1408.35   0.00   0.00   0.00   0.00   0.00   0.00 ]/20;
PtCSP_fore = PtCSP_fore/baseMVA; 
P_RE = P_RE/baseMVA; % 可再生能源PV WT机组出力
​
beta_Load = beta_Load*baseMVA^2; % $/MWh -> $/p.u.
​
M_bus_G = zeros(N,N_Gen); % 发电机机组-索引矩阵
for row = 1:N
    if abs(find(mpc.gen(:,1) == row)) > 0  % 发电机节点号 与 行号对应
        M_bus_G(row,find(mpc.gen(:,1) == row)) = 1; % M_bus_G相应处置1
    end
end
​
M_bus_RE = zeros(N,N_RE); % 可再生能源机组-索引矩阵
for row = 1:N
    if abs(find(mpc.RE(:,1) == row))>0
        M_bus_RE(row,find(mpc.RE(:,1) == row)) = 1;
    end
end
​
M_bus_CSP = zeros(N,N_CSP); % CSP机组-索引矩阵
for row = 1:N
    if abs(find(mpc.CSP(:,1) == row))>0
        M_bus_CSP(row,find(mpc.CSP(:,1) == row)) = 1;
    end
end
GSDF = makePTDF(mpc); % 发电转移分布因子矩阵,表征节点注入功率在全网络的分布
​
%% 负荷矩阵数据,按照 算例数据mpc.bus(:,3) 中各节点负荷的比例分配
    PD = bus(:,3)/baseMVA; 
    P_factor = PD/sum(PD);
    P_sum = mpc.load/baseMVA; 
    PD = P_factor*P_sum;      
​
%% 决策变量命名
    PG_G = sdpvar(N_Gen,NT,'full');  
    PG_RE = sdpvar(N_RE,NT,'full');   % (风光并网量)
    PG_CSP = sdpvar(N_CSP,NT,'full'); 
    PC_Load = sdpvar(N,NT,'full');   
    
    onoff_gen = binvar(N_Gen,NT,'full');
    onoff_CSP = binvar(N_CSP,NT,'full'); 
    
    Branch = sdpvar(N_Br,NT,'full');   
    Cost_StartUp  = sdpvar(N_Gen,NT-1,'full');
    
    Pt_TES_charge = sdpvar(N_CSP,NT,'full');  
    Pt_TES_discharge= sdpvar(N_CSP,NT,'full');
    Et_TES = sdpvar(N_CSP,NT,'full');         
    
%% 约束条件列写   
    Cons = [];
    for t = 1:NT
        if t >= 2 % type(1-水电, 2-火电机组)
            for i = 1:N_Gen % 火电机组-最小启/停时间约束 式(8-9)
                if (type_Gen(i,1)==2) || (type_Gen(i,1)==5) 
                    for tao = t + 1:min(t+T_Gen_min_on(i,1)-1,NT)   
                        Cons = [Cons, onoff_gen(i,t)-onoff_gen(i,t-1) <= onoff_gen(i,tao)];
                    end
                    for tao = t + 1:min(t+T_Gen_min_off(i,1)-1,NT) 
                        Cons = [Cons, onoff_gen(i,t-1)-onoff_gen(i,t) <= 1-onoff_gen(i,tao)];
                    end
                end
            end
            for i = 1:N_CSP  
                for tao = t+1:min(t+T_CSP_min_on(i,1)-1,NT)
                    Cons = [Cons, onoff_CSP(i,t)-onoff_CSP(i,t-1) <= onoff_CSP(i,tao)]; % CSP机组最小启/停时间约束
                end
                for tao = t+1:min(t+T_CSP_min_off(i,1)-1,NT)
                    Cons = [Cons, onoff_CSP(i,t-1)-onoff_CSP(i,t) <= 1-onoff_CSP(i,tao)];
                end
            end
        end 
        if t >= 2 % 火电机组 爬坡约束 式(6-7)
            Cons = [Cons,  PG_G(:,t) - PG_G(:,t-1) <= ...
                     onoff_gen(:,t-1).* P_Gen_up*60 + ... 
                    (onoff_gen(:,t)-onoff_gen(:,t-1)) .* P_Gen_min + ... 
                    (1-onoff_gen(:,t)) .* P_Gen_max];  
            Cons = [Cons, -PG_G(:,t) + PG_G(:,t-1) <= ...
                    onoff_gen(:,t) .* P_Gen_down*60 + ...
                   (onoff_gen(:,t-1)-onoff_gen(:,t)) .* P_Gen_min + ...  
                   (1-onoff_gen(:,t-1)) .* P_Gen_max];
               
            % CSP 机组 爬坡约束 式(6-7)
            Cons = [Cons,  PG_CSP(:,t) - PG_CSP(:,t-1) <= ...
                     onoff_CSP(:,t-1).* P_CSP_up*60 + ... %  
                     (onoff_CSP(:,t)-onoff_CSP(:,t-1)) .* P_CSP_min + ...
                     (1-onoff_CSP(:,t)) .* P_CSP_max]; 
            Cons = [Cons, -PG_CSP(:,t) + PG_CSP(:,t-1) <= onoff_CSP(:,t) .* P_CSP_down*60 + ...  
                    (onoff_CSP(:,t-1)-onoff_CSP(:,t)) .* P_CSP_min + ...  
                    (1-onoff_CSP(:,t-1)) .* P_CSP_max];
        end
    end
    % 机组出力的上下边界约束-式(3) % t(1-水电,2-火电, 5-燃气发电机组 6-CSP)
  Ind_2_5 = union(find(type_Gen(:,1) == 2),find(type_Gen(:,1) == 5)); 
   Cons = [Cons, onoff_gen(Ind_2_5,:) .* (P_Gen_min(Ind_2_5,1) * ones(1,NT)) ...    
           <= PG_G(Ind_2_5,:) <= ...
          onoff_gen(Ind_2_5,:) .* (P_Gen_max(Ind_2_5,1) * ones(1,NT))];  
        
   
        
    Cons = [Cons, onoff_CSP.*(P_CSP_min*ones(1,NT)) <= PG_CSP <= onoff_CSP.*(P_CSP_max*ones(1,NT))]; % CSP机组出力-边界约束
%     Cons = [Cons, onoff_CSP == ones(1,24)]; % CSP机组 
  
    Cons = [Cons, sum(PG_G,1) + sum(PG_RE,1) + sum(PG_CSP,1) == sum(PD - PC_Load,1)]; % 式(2)
   
    Cons = [Cons, Branch == GSDF*(M_bus_G*PG_G + M_bus_RE*PG_RE + M_bus_CSP*PG_CSP - (PD-PC_Load))]; % 
%     Cons = [Cons, -branch(:,6)*ones(1,NT) <= GSDF*(M_bus_G*PG_G+M_bus_RE*PG_RE+M_bus_CSP*PG_CSP-(PD- PC_Load)) <= branch(:,6)*ones(1,NT)]; % 
    Cons = [Cons, -999*ones(N_Br,NT) <= GSDF*(M_bus_G*PG_G+M_bus_RE*PG_RE+M_bus_CSP*PG_CSP-(PD-PC_Load)) <= 999*ones(N_Br,NT)]; % 118系统有186条线路
   
    Cons = [Cons, 0 <= PG_RE <= P_RE]; % 可再生出力
 
    Cons = [Cons, [60;50;100;80;40]/baseMVA * ones(1,24) <= PG_G ];
  
    Cons = [Cons, 0 <= PC_Load <= PD]; % 式(22)    
  
    Cons = [Cons, sum(onoff_gen .* (P_Gen_max*ones(1,NT)) - PG_G,1) + ...
            sum(onoff_CSP .* (P_CSP_max*ones(1,NT)) - PG_CSP,1) >= ...
            sum(CoeffReseve_load*PD,1) + sum(CoeffReserve_VRE*PG_RE,1) ];
   
    Cons = [Cons, Cost_StartUp >= (onoff_gen(:,2:NT) - onoff_gen(:,1:NT-1)) .* (c_ST_g*ones(1,NT-1))]; % 传统机组启动成本
    Cons = [Cons, Cost_StartUp >= 0];
    
%%%%%% CSP电站运转内部约束 %%%%%%
    E_TES_max = Capacity_TES_CSP * P_CSP_max; 
   
    Cons = [Cons, PG_CSP/yita_PB + Pt_TES_charge - Pt_TES_discharge <= PtCSP_fore]; % CSP输出电功率与TES充/放热功率,预测光热功率关系
  
    Cons = [Cons, Et_TES(:,2:NT) == Et_TES(:,1:NT-1) + Pt_TES_charge(:,1:NT-1)*yita_TES - Pt_TES_discharge(:,1:NT-1)/yita_TES];
  Cons = [Cons, Et_TES(:,1) == TES_initial * E_TES_max]; 
    Cons = [Cons, Et_TES(:,1) == Et_TES(:,NT)];          
   
    Cons = [Cons, 0 <= Pt_TES_charge    <= Capacity_TES_CSP*ones(N_CSP,NT)]; 
    Cons = [Cons, 0 <= Pt_TES_discharge <= Capacity_TES_CSP*ones(N_CSP,NT)];
  
    Cons = [Cons, 0 <= Et_TES <= E_TES_max * ones(1,NT)];
​
%% 目标函数 
    obj = sum(c_G_g'*PG_G) + sum(c_CSP_g'*PG_CSP) + sum(sum(Cost_StartUp) + beta_Load*sum(sum(PC_Load)) ); 
    % 机组的边际发电成本 + 启动成本 + 负荷削减成本
    
    % 运行调度 
    ops = sdpsettings('solver','cplex'); %  gurobi
    ans = optimize(Cons,obj,ops)
    
%% 求解成功后取值
  PG_G = value(PG_G)  ; 
    PG_RE = value(PG_RE) ;  
    PG_CSP = value(PG_CSP) ; 
    PC_Load = value(PC_Load) ;   
    onoff_gen = value(onoff_gen) ; 
    onoff_CSP = value(onoff_CSP) ; 
    Branch = value(Branch) ;   
    Cost_StartUp  = value(Cost_StartUp);
    obj = value(obj); % 总成本
    Pt_TES_charge = value(Pt_TES_charge);   
    Pt_TES_discharge = value(Pt_TES_discharge); 
    Et_TES = value(Et_TES);                 
    
disp(['IEEE14 不考虑N-k的和无CSP的经济调度情况,运行成本为 ', num2str(obj)])
%% 绘图 
% 已知的相关输入数据
    figure
    subplot(3,1,1)
    plot(PtCSP_fore * baseMVA,'m-o');
  title('CSP预测功率值')
  xlabel('时间(h)');
    ylabel('功率(MW)');
    
    subplot(3,1,2)
    plot(P_RE(1,:) * baseMVA,'m-o'); hold on
    plot(P_RE(2,:) * baseMVA,'b-s');
  title('可再生能源预测出力值')
  xlabel('时间(h)');
    ylabel('功率(MW)');
    legend('光伏','风电')
    
    subplot(3,1,3)
    plot(sum(PD) * baseMVA,'r-v');
  title('24h负荷值')
  xlabel('时间(h)');
    ylabel('功率(MW)');
    
    
​
    
%    subplot(2,1,2)
%  bar(baseMVA*PG_RE',0.75,'stack'); hold on; % 各PV、Wind机组出力
%    legend('PV','Wind')
%    title('电网中可再生能源机组出力')
%  xlabel('时间(h)');
%    ylabel('功率(MW)');
    
%    figure
%    surf(baseMVA*PC_Load);
%    title('负荷削减量')
%  xlabel('时间(h)');
%    ylabel('功率(MW)');
​
​

3 部分结果

含风电-光伏-光热电站电力系统N-k安全优化调度模型,综合能源,优化调度,matlab,光热电站,N-k,安全调度,分布式电源,风光

含风电-光伏-光热电站电力系统N-k安全优化调度模型,综合能源,优化调度,matlab,光热电站,N-k,安全调度,分布式电源,风光

含风电-光伏-光热电站电力系统N-k安全优化调度模型,综合能源,优化调度,matlab,光热电站,N-k,安全调度,分布式电源,风光

含风电-光伏-光热电站电力系统N-k安全优化调度模型,综合能源,优化调度,matlab,光热电站,N-k,安全调度,分布式电源,风光文章来源地址https://www.toymoban.com/news/detail-850103.html

4 下载链接

到了这里,关于含风电-光伏-光热电站电力系统N-k安全优化调度模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • vue-springboot-java电力员工安全施工培训课程考试管理系统

    本电力员工安全施工培训管理系统是为了提高员工查阅信息的效率和管理人员管理信息的工作效率,可以快速存储大量数据,还有信息检索功能,这大大的满足了员工和管理员这二者的需求。操作简单易懂,合理分析各个模块的功能,尽可能优化界面,让员工和管理员能使用

    2024年02月04日
    浏览(56)
  • 含光热电站的冷、热、电综合能源系统优化调度【节点网络】(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 光热发电

    2023年04月09日
    浏览(30)
  • 基于SpringBoot+Vue的电力员工安全施工培训管理系统的详细设计和实现(源码+lw+部署文档+讲解等)

    💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 2023-2024年最值得选的微信小程序毕业设计

    2024年04月09日
    浏览(79)
  • 【多区域电力系统模型】三区域电力系统的LQR和模糊逻辑控制(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 多区域

    2024年02月08日
    浏览(61)
  • 含光伏发电的变电站供电系统设计

    面对全球日趋严重的能源危机问题,可再生能源的开发和利用得到了人们的高度重视。其中辐射到地球太阳能资源是十分富饶的,绿色清洁的太阳能不会危害我们的生存环境,因而受到了人们的广泛利用。光伏发电作为可再生能源被广泛的应用,技术不断革新。为了提高光伏

    2024年02月05日
    浏览(41)
  • 【电力电子在电力系统中的应用】1 具有输出限幅的离散系统的PID控制器

    【仅供参考 】 【2023.03西南交大电力电子在电力系统中的应用】 目录 0 仿真要求 1 PID控制器的设计与封装 1.1 搭建仿真电路 1.2 对PID控制器部分封装为subsystem模块  1.3 创建Mask模块 2 PID控制器的参数选择 2.1 Kp参数的调节 2.2 Ki参数的调节 2.3 Kd参数的调节         1、针对极

    2024年01月16日
    浏览(47)
  • 浅谈安科瑞电力智能运维在高速铁路电力系统的应用分析

    摘  要: 高速铁路电力智能运维管理系统采用终端感知层、系统网络层、系统平台层的三层网络架构模式,通过集成网关,共享通信传输设备,利用铁路专用运维传输网络通道将各类监测数据上传至运维管理平台数据进行实时分析,建立了统一的智能运维建设标准、一体化共

    2024年02月04日
    浏览(44)
  • 电力系统知识预备及学习方向

    由于电源点与负荷中心多数处于不同地区,也无法大量储存,故其生产、输送、分配和消费都在同一时间内完成,并在同一地域内有机地组成一个整体,电能生产必须时刻保持与消费平衡。因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了

    2024年02月09日
    浏览(42)
  • 电力拖动自动控制系统

    J:机械转动惯量(kg/m2);wm:转子的机械角速度(rad/s); m :转子的机械转角;Te:电磁转矩(N.m);TL:负载转矩(N.m); D:阻转矩阻尼系数;K:扭转弹性转矩系数 忽略阻尼转矩和扭转弹性转矩,运动控制系统的简化运动方程式: l转矩控制是运动控制的根本问题 要控制

    2024年02月08日
    浏览(50)
  • 光伏电站智慧运维辅助系统解决方案 助力光伏运维监控智能化

    一、方案背景 由于光伏电站多建设在偏远地区,占地面广、地形分布复杂、受暴雨风雪恶劣天气影响,且电站运行人员少,流动性较大,容易造成管理混乱、运维效率低下,加之故障率高、电能损耗大等问题,给电站资产后续的经营管理以及发展带来了诸多风险和挑战。 随

    2024年02月08日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包