【刷题】图论——最小生成树:Prim、Kruskal【模板】

这篇具有很好参考价值的文章主要介绍了【刷题】图论——最小生成树:Prim、Kruskal【模板】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

假设有n个点m条边。
Prim适用于邻接矩阵存的稠密图,时间复杂度是 O ( n 2 ) O(n^2) O(n2),可用堆优化成 O ( n l o g n ) O(nlogn) O(nlogn)
Kruskal适用于稀疏图,n个点m条边,时间复杂度是 m l o g ( m ) mlog(m) mlog(m)

Prim:遍历n次,每次选择连通块和外面的点到连通块距离最短的一条边,并将该边对应点加入连通块中,更新其他店到连通块的距离
Kruskal:将所有边权从小到大排序,依次枚举每条边(a和b相连,边权w),如果发现目前a和b不在一个连通块内,将a和b加入连通块中。

题目

【刷题】图论——最小生成树:Prim、Kruskal【模板】,图论,算法

题目链接文章来源地址https://www.toymoban.com/news/detail-850298.html

Prim

#include <iostream>
#include <cstring>

using namespace std;
const int N = 110;
int n;
int w[N][N];
int dist[N]; // 外界每个点和当前连通块直接相连的边的最小值
bool st[N]; // 是否加入连通块

int prim() {
    int res = 0;
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    for (int i = 0; i < n; i ++ ) {
        int t = -1; // 不在连通块内的点里面,距离最小的点
        for (int j = 1; j <= n; j ++ ) {
            if (!st[j] && (t == -1 || dist[t] > dist[j])) { // j不在连通块里且或j距离更小
                t = j;
            }
        }
        res += dist[t];
        st[t] = true;
        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], w[t][j]); // 更新所有t能到的距离
    }
    return res;
}
int main() {
    scanf("%d", &n);
    for (int i = 1; i <= n; i ++ ) {
        for (int j = 1; j <= n; j ++ ) {
            scanf("%d", &w[i][j]);
        }
    }
    cout << prim() << endl;
}

Kruskal

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 110;
const int M = 10010;

struct Edge {
    int a, b, w;
    bool operator< (const Edge &t) const {
        return w < t.w;
    }
};

Edge e[M];
int p[N];
int n, w, m;

int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}
int kruskal() {
    for (int i = 1; i <= n; i ++ ) p[i] = i;
    sort(e, e + m);
    int res = 0;
    for (int i = 0; i < m; i ++ ) {
        int a = find(e[i].a);
        int b = find(e[i].b);
        if (a != b) {
            p[a] = b;
            res += e[i].w;
        }
    }
    return res;
}
int main() {
    scanf("%d", &n);
    m = n * n;
    for (int i = 0; i < n; i ++ ) {
        for (int j = 0; j < n; j ++ ) {
            scanf("%d", &w);
            e[i * n + j] = {i + 1, j + 1, w};
        }
    }
    cout << kruskal() << endl;
}

到了这里,关于【刷题】图论——最小生成树:Prim、Kruskal【模板】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 最小生成树(Prim算法,Kruskal算法)

    (1)生成树: 如果在一个无向连通图不包含回路(连通图中不存在环),则为一个树 (2)最小生成树(minimal spanning tree): 在一个图所有生成树中,代价最小的生成树称为最小生成树 (3)生成树的代价: 在一个无向连通网中,生成树各边的权值之和称为该生成树的代价

    2024年02月08日
    浏览(44)
  • 最小生成树(Prim算法与Kruskal算法)

    一个连通图的生成树是一个极小的连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。我们把构造连通网的最小代价生成树称为最小生成树。 例如下图中①、②、③都是左侧图的生成树,但③是构造连通网的最小代价,所以③是该图的最小生成树。 P

    2024年02月05日
    浏览(57)
  • 最小生成树—Kruskal算法和Prim算法

    连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任 意一对顶点都是连通的,则称此图为连通图。 生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点 和n-1条边。 最小生成树:构成生成树的

    2024年02月05日
    浏览(46)
  • 最小(代价)生成树—Prim算法与Kruskal算法

    目录  一、最小生成树的特点 二、最小生成树算法  ① Prim(普里姆)算法 ②Kruskal(克鲁斯卡尔)算法  ③Prim算法与Kruskal算法对比 最小生成树是带权连通图G=(V,E)的生成树中边的权值之和最小的那棵生成树。它具有以下特点: 图G中各边权值互不相等时有唯一的最小生成树。图

    2024年02月01日
    浏览(37)
  • 最小生成树Kruskal、Prim算法C++

    连通图: 在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1和顶点v2是连通的。如果图中任意一对顶点都是连通的,则称此图为连通图。 生成树: 一个连通图的最小连通子图称作为图的生成树。有 n个顶点 的连通图的生成树有 n个顶点和 n-1 条边。 最小生成树: 最小生活

    2024年02月10日
    浏览(40)
  • 【最小生成树】一文学懂prim、kruskal算法

    博主简介: 努力学习的大一在校计算机专业学生,热爱学习和创作。目前在学习和分享:算法、数据结构、Java等相关知识。 博主主页: @是瑶瑶子啦 所属专栏: 算法 ;该专栏专注于蓝桥杯和ACM等算法竞赛🔥 近期目标: 写好专栏的每一篇文章 首先,我们要了解什么是最小生

    2023年04月25日
    浏览(32)
  • 用prim和kruskal算法求最小生成树问题

    题目 http://ybt.ssoier.cn:8088/problem_show.php?pid=1350 信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn) http://ybt.ssoier.cn:8088/problem_show.php?pid=1391 相当于一个图中求最小生成树的问题 prim解决 kruskal解法 信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn) http://ybt.ssoier.cn:8088/problem_show.ph

    2024年02月09日
    浏览(38)
  • C语言实现最小生成树算法:Prim和Kruskal

    以下是使用C语言实现Prim算法生成最小生成树的代码: 注释如下: #include stdio.h 和 `#include #define V 5 定义了图中顶点的个数为5。 int minDistance(int dist[], int visited[]) 函数用于找到顶点集合中未访问的顶点中距离最小的顶点。输入参数 dist 用于存储顶点到最小生成树的距离,输入

    2024年02月03日
    浏览(42)
  • 求最小生成树Prim(普里姆)和Kruskal(克鲁斯卡尔)算法

     想求最小生成树,我们首先得弄懂以下几个概念   连通图 :图中任意两个顶点都是连通的 极小连通子图 :既要保持图连通又要使得边数最少的子图 生成树 : 包含图中全部顶点的一个极小连通子图 连通图用通俗的话来讲就是,某一个顶点,可以 直接或者间接 (通过其他顶点

    2024年02月05日
    浏览(45)
  • 考研算法复试刷题19天:Prim算法求最小生成树 【prim,最小生成树】

    参考博客:图解:什么是最小生成树? - 知乎 (zhihu.com)  总结下来的过程就是,一张图,我们将他化为树的形式,也就是生成树。那么最小生成树有是啥呢? 所谓一个 带权图 的最小生成树,就是原图中边的权值最小的生成树 ,所谓最小是指边的权值之和小于或者等于其它

    2024年02月07日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包