ELK 企业级日志分析系统 简单介绍

这篇具有很好参考价值的文章主要介绍了ELK 企业级日志分析系统 简单介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一     ELK 简介

1, elk 是什么

2,elk 架构图

3,elk 日志处理步骤

二    Elasticsearch 简介

1, Elasticsearch 是什么

2, Elasticsearch 的核心概念

3, Elasticsearch 的原理

三     Logstash

1, Logstash 是什么

2,Logstash 架构图

四,Logstash 的代替品 

1,Filebeat

1.1,为什么Logstash 要被换掉

1.2,filebeat 结合 logstash 带来好处

2,缓存/消息队列(redis、kafka、RabbitMQ等)

3,   Fluentd

五    kibana

1, kibana 是什么

2, kibana 主要功能

六     总结

1,为什么要使用 ELK

2,完整日志系统基本特征

3,ELK 的工作原理


一     ELK 简介

1, elk 是什么

ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。
 

2,elk 架构图

ELK 企业级日志分析系统 简单介绍,elk

3,elk 日志处理步骤

将日志进行集中化管理

将日志格式化(Logstash)并输出到Elasticsearch

对格式化后的数据进行索引和存储(Elasticsearch)

前端数据的展示(Kibana)

二    Elasticsearch 简介

1, Elasticsearch 是什么

Elasticsearch是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大容量的日志数据,也可用于搜索许多不同类型的文档。
说白了就是个 分布式的存储数据·的引擎

2, Elasticsearch 的核心概念

接近实时

集群

节点

索引

索引(库)->类型(表)->文档(记录)

分片和副本

3, Elasticsearch 的原理

Elasticsearch 是用 Java 开发的,可通过 RESTful Web 接口,让用户可以通过浏览器与 Elasticsearch 通信。

restful api 接口有这几个:

GET 获取     文档
POST 创建
PUT  更新
DELTET 删除
GET 搜索  值

 

三     Logstash

1, Logstash 是什么

作为数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置,一般会发送给 Elasticsearch。
Logstash 由 Ruby 语言编写,运行在 Java 虚拟机(JVM)上,是一款强大的数据处理工具, 可以实现数据传输、格式处理、格式化输出。Logstash 具有强大的插件功能,常用于日志处理。
 

2,Logstash 架构图

input(数据采集)  filter(数据过滤)  output(数据输出)

ELK 企业级日志分析系统 简单介绍,elk

四,Logstash 的代替品 

1,Filebeat

1.1,为什么Logstash 要被换掉

logstash 搜集数据再输出 但是logstash是java写的程序,会占用内存

Filebeat:轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat,并指定目录与日志格式,Filebeat 就能快速收集数据,并发送给 logstash 进或是直接发给Elasticsearch 存储,性能上相比运行于 JVM 上的 logstash 优势明显,是对它的替代。常应用于 EFLK 架构当中行解析
 

1.2,filebeat 结合 logstash 带来好处

1)通过 Logstash 具有基于磁盘的自适应缓冲系统,该系统将吸收传入的吞吐量,从而减轻 Elasticsearch 持续写入数据的压力
2)从其他数据源(例如数据库,S3对象存储或消息传递队列)中提取
3)将数据发送到多个目的地,例如S3,HDFS(Hadoop分布式文件系统)或写入文件
4)使用条件数据流逻辑组成更复杂的处理管道
 

2,缓存/消息队列(redis、kafka、RabbitMQ等)

可以对高并发日志数据进行流量削峰和缓冲,这样的缓冲可以一定程度的保护数据不丢失,还可以对整个架构进行应用解耦。

3,   Fluentd

是一个流行的开源数据收集器。由于 logstash 太重量级的缺点,Logstash 性能低、资源消耗比较多等问题,随后就有 Fluentd 的出现。相比较 logstash,Fluentd 更易用、资源消耗更少、性能更高,在数据处理上更高效可靠,受到企业欢迎,成为 logstash 的一种替代方案,常应用于 EFK 架构当中。在 Kubernetes 集群中也常使用 EFK 作为日志数据收集的方案。
在 Kubernetes 集群中一般是通过 DaemonSet 来运行 Fluentd,以便它在每个 Kubernetes 工作节点上都可以运行一个 Pod。 它通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。
 

五    kibana

1, kibana 是什么

Kibana 通常与 Elasticsearch 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 提供图形化的 web 界面来浏览 Elasticsearch 日志数据,可以用来汇总、分析和搜索重要数据。
 

2, kibana 主要功能

Elasticsearch无缝之集成

整合数据,复杂数据分析

让更多团队成员受益

接口灵活,分享更容易

配置简单,可视化多数据源

简单数据导出

六     总结

1,为什么要使用 ELK

日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。
往往单台机器的日志我们使用grep、awk等工具就能基本实现简单分析,但是当日志被分散的储存不同的设备上。如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志。这样是不是感觉很繁琐和效率低下。当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总。集中化管理日志后,日志的统计和检索又成为一件比较麻烦的事情,一般我们使用 grep、awk和wc等Linux命令能实现检索和统计,但是对于要求更高的查询、排序和统计等要求和庞大的机器数量依然使用这样的方法难免有点力不从心。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。
 

2,完整日志系统基本特征

收集:能够采集多种来源的日志数据
传输:能够稳定的把日志数据解析过滤并传输到存储系统
存储:存储日志数据
分析:支持 UI 分析
警告:能够提供错误报告,监控机制
 

3,ELK 的工作原理

(1)在所有需要收集日志的服务器上部署Logstash;或者先将日志进行集中化管理在日志服务器上,在日志服务器上部署 Logstash。
(2)Logstash 收集日志,将日志格式化并输出到 Elasticsearch 群集中。
(3)Elasticsearch 对格式化后的数据进行索引和存储。
(4)Kibana 从 ES 群集中查询数据生成图表,并进行前端数据的展示。
 

总结:logstash作为日志搜集器,从数据源采集数据,并对数据进行过滤,格式化处理,然后交由Elasticsearch存储,kibana对日志进行可视化处理。

ELK 企业级日志分析系统 简单介绍,elk文章来源地址https://www.toymoban.com/news/detail-850306.html

到了这里,关于ELK 企业级日志分析系统 简单介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ELK 企业级日志分析系统(一)

    服务器数量较少时 使用 rsyslog 或 脚本 收集、分割日志,统一汇总到专门存放日志的日志服务器保存管理。 (查看日志可把需要的日志文件传输到 windows 主机上,使用专业的文本工具打开分析日志) 服务器数量较多时 使用 ELK 收集日志,存储日志,展示日志。 日志主要包括

    2024年02月16日
    浏览(37)
  • ELK 企业级日志分析系统(三)

    定义: zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目 工作机制: zookeeper从设计模式角度来理解:是以一个基于观察者模式设计的分布式服务管理框架,它复习存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生改变,

    2024年02月15日
    浏览(42)
  • ELK 企业级日志分析系统(二)

    目录 ELK Kiabana 部署(在 Node1 节点上操作) 1.安装 Kiabana 2.设置 Kibana 的主配置文件  3.启动 Kibana 服务 4.验证 Kibana  5.将 Apache 服务器的日志(访问的、错误的)  添加Elasticsearch 并通过 Kibana 显示  Filebeat+ELK 部署 在 filebeat 节点上操作 2.设置 filebeat 的主配置文件  

    2024年02月14日
    浏览(39)
  • ELK 企业级日志分析系统(四)

    1.下载安装包 官方下载地址:http://kafka.apache.org/downloads.html cd /opt wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz 2.安装 Kafka cd /opt/ tar zxvf kafka_2.13-2.7.1.tgz mv kafka_2.13-2.7.1 /usr/local/kafka //修改配置文件 cd /usr/local/kafka/config/ cp server.properties{,.bak} vim server.properties br

    2024年02月16日
    浏览(33)
  • ELK 企业级日志分析系统 ELFK

    ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。 使用ELK日志文件系统的原因:日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了

    2024年02月07日
    浏览(43)
  • 分布式ELK 企业级日志分析系统

    ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。 ElasticSearch :是基于Lucene(一个全文检索引擎的架构)开发的分布式存储检索引擎,用来存储各类日志。Elasticsearch 是用

    2024年02月16日
    浏览(40)
  • DAY 74 ELK企业级日志分析系统

    ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求 ElasticSearch: 是基于Lucene(一个全文检索引擎的架构)开发的分布式存储检索引擎,用来存储各类日志。 Elasticsearch 是用

    2024年02月09日
    浏览(35)
  • 【ELK企业级日志分析系统】安装与部署ELK详解

    ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash和kibana三个开源工具配合使用 , 完成更强大的,用户对日志的查询、排序、统计需求。 ElasticSearch ElasticSearch:是基于Lucene(一个 全文检索引擎的架构 )开发的分布式存储检索引擎,用来存储各类日志。 El

    2024年02月16日
    浏览(43)
  • 【ELK企业级日志分析系统】部署Filebeat+ELK详解

    接上文安装与部署ELK详解 (1)在Filebeat节点上,安装Apache服务 (2)修改Apache服务的配置文件 (3)开启Apache服务 (4)浏览器访问,验证Apache服务 (1) 安装Filebeat (2)设置filebeat的主配置文件 (3)启动filebeat (4)在Logstash组件所在节点上,新建一个Logstash配置文件(CentOS 7-3) (

    2024年02月16日
    浏览(45)
  • 分布式应用:ELK企业级日志分析系统

    目录 一、理论 1.ELK  2.ELK场景  3.完整日志系统基本特征 4.ELK 的工作原理          5.ELK集群准备 6.Elasticsearch部署(在Node1、Node2节点上操作) 7.Logstash 部署(在 Apache 节点上操作) 8.Kiabana 部署(在 Node1 节点上操作) 二、实验          1.Elasticsearch部署(在Node1、Node2节点上

    2024年02月14日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包