算法沉淀——动态规划篇(子数组系列问题(下))

这篇具有很好参考价值的文章主要介绍了算法沉淀——动态规划篇(子数组系列问题(下))。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程

    • 以上述的dp[i]意义为根据, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。
  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、等差数列划分

【题目】:413. 等差数列划分
【题目】:

 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
 给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。(子数组 是数组中的一个连续序列)

【示例】:

输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。

【分析】:
 我们可以定义dp[i]表示以i为结尾,等差数组的子数组个数。之后我们可以通过判断(nums[i]、nums[i-1]、nums[i-2])是否构成等差数列,来进一步分析

状态转移方程推导:

  1. 如果nums[i]、nums[i-1]、nums[i-2]不构成等差数列,显然此时以i为结尾的等差数组的子数组个数为0。即dp[i] = 0;
  2. 如果构成等差数列,此时dp[i]的值至少为1。此时我们还需加上dp[i-1]的值。原因在于如果以i-1为结尾的等差数列存在,此时该等差数列公差为dp[i-1] -dp[i-2]。同时nums[i]、nums[i-1]、nums[i-2]构成等差数列,公差也为dp[i-1] -dp[i-2]。这也意味着,以i-1为结尾的所有等差数列,在添加新增nums[i]元素后,依然是等差数列。所以状态转移方程为dp[i] = dp[i - 1] + 1;

细节处理:
 显然当i为1、2时,状态转移方程不适用。我们由于dp[0]、dp[1]一定构不成等差数列,所以我们可以先将dp[0]、dp[1]先初始化为0,在从下标2开始,从左往右填表。

【代码编写】:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& nums) {
        int n = nums.size();
        vector<int> dp(n);
        int ret = 0;
        for(int i = 2; i < n; i++)
        {
            if(nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2])
                dp[i] = dp[i - 1] + 1;
            ret += dp[i];//累加所有结果
        }
        return ret;
    }
};

二、最长湍流子数组

【题目链接】:978. 最长湍流子数组
【题目】:

 给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 。如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。
 更正式地来说,当 arr 的子数组 A[i], A[i+1], …, A[j] 满足仅满足下列条件时,我们称其为湍流子数组:
若 i <= k < j :当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j :当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。

【示例】:

输入:arr = [9,4,2,10,7,8,8,1,9]
输出:5
解释:arr[1] > arr[2] < arr[3] > arr[4] < arr[5]

【分析】:
 我们定义f[i]表示以i位置为结尾,并且最后是“上升”趋势的最长湍流子数组大小;g[i]表示以i位置为结尾,并且最后是“下降”趋势的最长湍流子数组大小。

状态转移方程推导:
 此时以i为结尾的湍流子数组长度可能为1,或大于1。具体如下:

算法沉淀——动态规划篇(子数组系列问题(下)),算法指南,算法,动态规划,leetcode,学习方法,学习和成长

算法沉淀——动态规划篇(子数组系列问题(下)),算法指南,算法,动态规划,leetcode,学习方法,学习和成长
特殊处理:
 以i为结尾的湍流子数组中,不管最后一步是呈上升趋势还是下降趋势,最小长度一定为1,即nums[i]本身。所以我们在创建f和g表时,可以将初始值设为1。后续填表过程中,仅需考虑子数组长度大于1的情况即可!!

【代码编写】:

class Solution {
public:
    int maxTurbulenceSize(vector<int>& arr) {
        int n = arr.size();
        vector<int> f(n, 1), g(n, 1);
        int ret = 1;
        for(int i = 1; i < n; i++)
        {
            if(arr[i] > arr[i - 1])
                f[i] = g[i - 1] + 1;
            else if(arr[i] < arr[i - 1])
                g[i] = f[i - 1] + 1;
            ret = max(ret, max(f[i], g[i]));
        }
        return ret;
    }
};

三、单词拆分

【题目链接】:139. 单词拆分
【题目】:

 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
 注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

【示例】:

输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的子字符串是否能单词拆分。

状态转移方程推导:

 要判断从下标从0到i的子串是否能单词拆分。我们可以将0到i的字串分为两部分:0到j-1,j到i(0 <= j <= i)。而dp[j-1]表示以j-1位置为结尾的字串能否单词拆分的结果。此时我们还需判断下标从j到i的字串是否能单词拆分。此时即可判断此种分发是否能实现单词拆分!!
 但由于j的位置不确定。所以我们可以一次将j从开始,逐渐减小到起始下标0。在每次递减过程中,只有存在一种拆分发将拆分出的两个字串都能实现拆分单词,此时dp[i]=true,同时可停止遍历。否则为false;

算法沉淀——动态规划篇(子数组系列问题(下)),算法指南,算法,动态规划,leetcode,学习方法,学习和成长
细节处理:
 在填dp表过程中,dp[i]的值会用到dp[j-1](0<=j<=i),可能会发生越界访问。所以我们为dp表额外增加一个空间,同时为了保证后续填表的正确性,我们需要将dp[0]初始化为true。
 同时面对字符串问题时,通常需要存在子字符窜问题。此时,下标映射关系可能+1,可能减1。所以这里个原始字符串最开始任意增加一个字符(习惯上该字符为空字符),让原始字符串下标统一向后移动一位。
【代码编写】:

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_map<string, int> hash;
        for(auto& str : wordDict)//后续快速查找是否存在某单词
            hash[str]++;
        int n = s.size();
        vector<bool> dp(n + 1);
        dp[0] = true;//初始化,保证后续填表正确
        s = ' ' + s;//让s下标集体向后移动一位
        for(int i = 1; i <= n; i++)
            for(int j = i; j >= 1; j--)
            {
                if(dp[j - 1] && hash.count(s.substr(j, i - j + 1)))
                {
                    dp[i] = true;
                    break;
                }
            }
        return dp[n];
    }
};

四、环绕字符串中唯一的子字符串

【题目链接】:467. 环绕字符串中唯一的子字符串
【题目】:

【代码编写】:

 定义字符串 base 为一个 “abcdefghijklmnopqrstuvwxyz” 无限环绕的字符串,所以 base 看起来是这样的:

  • “…zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd…”。
    给你一个字符串 s ,请你统计并返回 s 中有多少 不同非空子串 也在 base 中出现。

【示例】:

输入:s = “zab”
输出:6
解释:字符串 s 有六个子字符串 (“z”, “a”, “b”, “za”, “ab”, and “zab”) 在 base 中出现。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的字符串中非空字串在base中出现的个数。

状态转移方程推导:
 非空字串存在于base中有两种可能:

  1. 相邻字符是连续的,即s[i-1] + 1 == s[i]
  2. 相邻字符分别是26个小写字母的结束和开始,即是bashs[i-1] == 'z' && s[i] == 'a'
    所以状态转移方程为:
if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))
     dp[i] = dp[i - 1] + 1;

细节处理:
 由于当个字符一定存在于base中,所以dp[i]的值最小为1,所以我们可以将dp表中的初始值全部初始化为1。

 上述dp表中的结果存在重复值,不能直接累加。那如何去重?

  • 我们知道以某一个字符为结尾的子串中,长子串一定包含了短子串的所有结果。所以我们可以借助一个26空间大小的数组,将s分割出的字串中,以结尾字符为依据,将最长字串结果放入对应的数组空间中。从而实现去重效果。即:hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);
     既然以及去重了,最后只需将数组中的结果累加即可!!


【代码编写】:文章来源地址https://www.toymoban.com/news/detail-850543.html

class Solution {
public:
    int findSubstringInWraproundString(string s) {
        int n = s.size();
        vector<int> dp(n, 1);
        for(int i = 1; i < n; i++)
            if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))
                dp[i] = dp[i - 1] + 1;
        
        int hash[26] = {0};
        for(int i = 0; i < n; i++)//去重
            hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);

        int ret = 0;
        for(auto x : hash)
            ret += x;
        return ret;
    }
};

到了这里,关于算法沉淀——动态规划篇(子数组系列问题(下))的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【手撕算法|动态规划系列No.2】leetcode面试题 08.01. 三步问题

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(64)
  • 【算法|动态规划No.12】leetcode152. 乘积最大子数组

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月08日
    浏览(45)
  • 【算法|动态规划系列No.5】leetcode62. 不同路径

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(43)
  • 【手撕算法|动态规划系列No.4】leetcode91. 解码方法

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(41)
  • 【LeetCode动态规划#14】子序列系列题(最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列)

    力扣题目链接(opens new window) 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 示例 1: 输入:nums = [10,9,2,5,3,7,101,18] 输出

    2024年02月01日
    浏览(56)
  • 【手撕算法|动态规划系列No.3】leetcode746. 使用最小花费爬楼梯

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(64)
  • 【手撕算法|动态规划系列No.1】leetcode1137. 第 N 个泰波那契数

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月11日
    浏览(55)
  • 算法系列--动态规划--背包问题(3)--完全背包介绍

    💕\\\"Su7\\\"💕 作者:Lvzi 文章主要内容:算法系列–动态规划–背包问题(3)–完全背包介绍 大家好,今天为大家带来的是 算法系列--动态规划--背包问题(3)--完全背包介绍 链接: 完全背包 可以发现完全背包问题和01背包问题还是特比相似的 分析: 完全背包问题 是 01背包问题 的推广

    2024年04月25日
    浏览(45)
  • 算法系列--动态规划--背包问题(1)--01背包介绍

    💕\\\"趁着年轻,做一些比较cool的事情\\\"💕 作者:Lvzi 文章主要内容:算法系列–动态规划–背包问题(1)–01背包介绍 大家好,今天为大家带来的是 算法系列--动态规划--背包问题(1)--01背包介绍 背包问题是动态规划中经典的一类问题,经常在笔试面试中出现,是非常 具有区分度 的题

    2024年04月16日
    浏览(56)
  • 算法沉淀——BFS 解决最短路问题(leetcode真题剖析)

    BFS (广度优先搜索)是解决最短路径问题的一种常见算法。在这种情况下,我们通常使用BFS来查找从一个起始点到目标点的最短路径。 具体步骤如下: 初始化: 从起始点开始,将其放入队列中,并标记为已访问。 BFS遍历: 不断从队列中取出顶点,然后探索与该顶点相邻且

    2024年02月20日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包