70. 爬楼梯 (进阶)
题目描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
输入描述:输入共一行,包含两个正整数,分别表示n, m
输出描述:输出一个整数,表示爬到楼顶的方法数。
输入示例:3 2
输出示例:3
提示:
当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。
此时你有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶段
1 阶 + 2 阶
2 阶 + 1 阶
-
确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。 -
确定递推公式
在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j] -
dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果 -
确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。 -
举例来推导dp数组
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int m=in.nextInt();
int[] dp=new int[n+1];
dp[0]=1;
for(int j=1;j<=n;j++){
for(int i=0;i<=m;i++){
if(j>=i){
dp[j]=dp[j]+dp[j-i];
}
}
}
System.out.println(dp[n]);
}
}
时间复杂度:O(mn)
空间复杂度:O(n)
322. 零钱兑换
动规五部曲分析如下:
-
确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j] -
确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); -
dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。 -
确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。 -
举例推导dp数组
class Solution {
public int coinChange(int[] coins, int amount) {
int max=Integer.MAX_VALUE;
int[] dp=new int[amount+1];
for(int i=0;i<dp.length;i++){
dp[i]=max;
}
dp[0]=0;
for(int i=0;i<coins.length;i++){
for(int j=coins[i];j<=amount;j++){
if(dp[j-coins[i]]!=max){//只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要
dp[j]=Math.min(dp[j],dp[j-coins[i]]+1);
}
}
}
return dp[amount]==max?-1:dp[amount];
}
}
时间复杂度: O(n * amount),其中 n 为 coins 的长度
空间复杂度: O(amount)
279.完全平方数
动规五部曲分析如下:
-
确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j] -
确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]); -
dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
非0下标的dp[j]应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。 -
确定遍历顺序
我们知道这是完全背包,
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。文章来源:https://www.toymoban.com/news/detail-850573.html
class Solution {
public int numSquares(int n) {
int max = Integer.MAX_VALUE;
int[] dp = new int[n + 1];
for (int j = 0; j <= n; j++) {//初始化
dp[j] = max;
}
dp[0]=0;
for(int i=1;i*i<=n;i++){
int weight=i*i;
for(int j=weight;j<=n;j++){
dp[j]=Math.min(dp[j],dp[j-weight]+1);
}
}
return dp[n];
}
}
时间复杂度: O(n * √n)
空间复杂度: O(n)文章来源地址https://www.toymoban.com/news/detail-850573.html
到了这里,关于java算法day45 | 动态规划part07 ● 70. 爬楼梯 (进阶) ● 322. 零钱兑换 ● 279.完全平方数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!