【自然语言】使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化

这篇具有很好参考价值的文章主要介绍了【自然语言】使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、任务目标

python代码写将 HarryPorter 电子书作为语料库,分别使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化。

1. 首先将数据预处理,Word2Vec 训练时要求考虑每个单词前后的五个词汇,地址为

作为其上下文 ,生成的向量维度为50维

2.分别搜索 courtroom 和 wizard 这两个词语义最近的5个单词

3.对wizard 和witch 这两个单词在二维平面上进行可视化

内容补充:

什么是对他们进行向量化?

当涉及将文本数据转换为计算机可以处理的形式时,常用的方法之一是文本向量化。文本向量化是将文本文档转换为数值向量的过程,以便计算机可以理解和处理。

 

  1. 词袋模型(Bag of Words Model):

    • 词袋模型是一种简单而常用的文本向量化方法。
    • 在词袋模型中,每个文档被表示为一个向量,其中每个维度对应于词汇表中的一个词。
    • 文档向量的每个维度表示对应词在文档中出现的频次(或者可以是二进制值,表示是否出现)。
    • 这意味着词袋模型忽略了单词的顺序和上下文,只关注词的出现频率。

 

  1. TF-IDF模型(Term Frequency-Inverse Document Frequency Model):

    • TF-IDF是一种用于评估一个词对于一个文档在语料库中的重要性的统计方法。
    • 与词袋模型类似,TF-IDF模型也将文档表示为向量,但是每个维度的值是基于词的TF-IDF得分。
    • Term Frequency(TF)表示词在文档中出现的频率,而Inverse Document Frequency(IDF)表示词的稀有程度或信息量。
    • TF-IDF的计算方法是将TF与IDF相乘,以突出显示在文档中频繁出现但在整个语料库中稀有的词语。

 

  1. Word2Vec模型:

    • Word2Vec是一种用于将词语表示为连续向量空间中的向量的技术。
    • Word2Vec模型基于分布式假设,即在语料库中,具有相似上下文的词在向量空间中应该具有相似的表示。
    • Word2Vec模型通常通过训练神经网络来学习词向量,其中每个词都被表示为一个密集的向量,称为嵌入(embedding)。
    • 通过Word2Vec,词向量可以捕捉到词语之间的语义和语法关系,例如,语义上相似的词在向量空间中会更加接近。

二、代码部分 

nltk.download('punkt')
nltk.download('stopwords')

【自然语言】使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化,学习过程,人工智能,word2vec,tf-idf,自然语言处理

from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from gensim.models import Word2Vec
from gensim.models import TfidfModel
from gensim.corpora import Dictionary
import matplotlib.pyplot as plt

# 导入停用词
stop_words = set(stopwords.words('english'))

# 加载数据
corpus_file = '/Users/zhengyawen/Downloads/HarryPorter.txt'
with open(corpus_file, 'r', encoding='utf-8') as file:
    data = file.read()

# 预处理数据
sentences = [word_tokenize(sentence.lower()) for sentence in data.split('.')]
preprocessed_sentences = []
for sentence in sentences:
    valid_words = []
    for word in sentence:
        if word.isalpha() and word not in stop_words:
            valid_words.append(word)
    preprocessed_sentences.append(valid_words)

# 构建Word2Vec模型
w2v_model = Word2Vec(sentences=preprocessed_sentences, vector_size=50, window=5, min_count=1, sg=0)

# 获取单词向量
vector_courtroom = w2v_model.wv['courtroom']
vector_wizard = w2v_model.wv['wizard']

# 搜索与“courtroom”和“wizard”最相似的5个单词
similar_words_courtroom = w2v_model.wv.most_similar('courtroom', topn=5)
similar_words_wizard = w2v_model.wv.most_similar('wizard', topn=5)

print("Word2Vec模型:")
print("单词 courtroom 的向量:", vector_courtroom)
print("单词 wizard 的向量:", vector_wizard)
print("语义最近的5个单词 (courtroom):")
for word, similarity in similar_words_courtroom:
    print(f"{word}: {similarity}")

print("\n语义最近的5个单词 (wizard):")
for word, similarity in similar_words_wizard:
    print(f"{word}: {similarity}")

# 构建词袋模型
dictionary = Dictionary(preprocessed_sentences)
corpus = [dictionary.doc2bow(sentence) for sentence in preprocessed_sentences]
tfidf_model = TfidfModel(corpus)
corpus_tfidf = tfidf_model[corpus]

# 可视化Word2Vec模型中wizard和witch的向量
words_to_plot = ['wizard', 'witch']
word_vectors = [w2v_model.wv[word] for word in words_to_plot]

# 可视化
plt.figure(figsize=(10, 6))
for i, word in enumerate(words_to_plot):
    plt.scatter(word_vectors[i][0], word_vectors[i][1], label=word)

plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.title('Visualization of Word Vectors')
plt.legend()
plt.show()

三、代码运行结果

【自然语言】使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化,学习过程,人工智能,word2vec,tf-idf,自然语言处理

【自然语言】使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化,学习过程,人工智能,word2vec,tf-idf,自然语言处理文章来源地址https://www.toymoban.com/news/detail-850620.html


到了这里,关于【自然语言】使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文本分析-使用jieba库实现TF-IDF算法提取关键词

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+         TF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文件频率)是一种用于资讯检索与资

    2024年02月11日
    浏览(49)
  • 什么是 TF-IDF 算法?

    简单来说, 向量空间模型就是希望把查询和文档都表达成向量,然后利用向量之间的运算来进一步表达向量间的关系 。比如,一个比较常用的运算就是计算查询所对应的向量和文档所对应的向量之间的 “ 相关度 ”。 简单解释TF-IDF TF (Term Frequency)—— “单词

    2024年02月10日
    浏览(40)
  • [nlp] TF-IDF算法介绍

    (1)TF是词频(Term Frequency) 词频是文档中词出现的概率。 (2) IDF是逆向文件频率(Inverse Document Frequency) 包含词条的文档越少,IDF越大。

    2024年02月15日
    浏览(39)
  • 基于TF-IDF+Tensorflow+pyQT+孪生神经网络的智能聊天机器人(深度学习)含全部工程源码及模型+训练数据集

    本项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 首先,我们使用TF-IDF技术构建了一个检索模型。TF-IDF可以衡量一个词语在文档中

    2024年02月12日
    浏览(59)
  • 基于TF-IDF+Tensorflow+PyQt+孪生神经网络的智能聊天机器人(深度学习)含全部Python工程源码及模型+训练数据集

    本项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 首先,我们使用TF-IDF技术构建了一个检索模型。TF-IDF可以衡量一个词语在文档中

    2024年02月13日
    浏览(53)
  • TF-IDF (BigData, Data Mining)

    TF-IDF (term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。 TF 是词频(Term Frequency), IDF 是逆文本频率指数(Inverse Document Frequency)。 TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。 字词的重要

    2024年02月06日
    浏览(39)
  • tf-idf原理 & TfidfVectorizer参数详解及实战

             目录 一、原理 二、实战 sklearn中提供的文本处理方法 1、导包  2、初始化词频向量/tf_idf的训练参数 3、CountVectorizer训练及应用函数 4、CountVectorizer使用 5、TfidfTransformer训练及应用函数 6、TfidfTransformer训练及应用函数 三、划重点 少走10年弯路         tf-idf作为

    2024年02月02日
    浏览(48)
  • 用Python实现TF-IDF算法:从原理到实现

    TF-IDF算法是一种用于文本处理和信息检索的算法,用于衡量单词在文本中的重要性。在TF-IDF算法中,每个单词都被赋予一个权重,该权重由该单词在文本中的频率(TF)和在整个文本集合中的频率(IDF)共同决定。 Term Frequency(TF)指一个单词在文本中出现的频率。TF值的计算

    2024年02月04日
    浏览(40)
  • 大数据课程K15——Spark的TF-IDF计算Term权重

    文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州 ⚪ 了解Spark的TF-IDF算法概念; ⚪ 了解Spark的TF-IDF算法定义; ⚪ 了解Spark的TF-IDF算法案例; TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF意思是词频(Term Frequency),

    2024年02月10日
    浏览(50)
  • 【小沐学NLP】Python实现TF-IDF算法(nltk、sklearn、jieba)

    TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF是词频(Term Frequency),IDF是逆文本频率指数(Inverse Document Frequency)。 TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随

    2024年02月03日
    浏览(72)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包