大数据
定义
“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。大数据,又称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
特征
容量(Volume) |
数据的大小决定所考虑的数据的价值和潜在的信息; |
种类(Variety) |
数据类型的多样性; |
速度(Velocity) |
指获得数据的速度; |
可变性(Variability) |
妨碍了处理和有效地管理数据的过程。 |
真实性(Veracity) |
数据的质量。 |
复杂性(Complexity) |
数据量巨大,来源多渠道。 |
价值(value) |
合理运用大数据,以低成本创造高价值。 |
意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。大数据的价值主要体现在对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;做小而美模式的中小微企业可以利用大数据做服务转型;面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
Hadoop
定义
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统,其中一个组件是HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。HDFS放宽了POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算 。
优点
Hadoop是一个能够对大量数据进行分布式处理的软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。
Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。
Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。
Hadoop 还是可伸缩的,能够处理 PB 级数据。
此外,Hadoop 依赖于社区服务,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点 :
1.高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖 。
2.高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
3.高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快 。
4.高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配 。
5.低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低 。
Hadoop带有用java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如C++。文章来源:https://www.toymoban.com/news/detail-850922.html
意义
Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务发送到多个节点上,之后再以单个数据集的形式加载到数据仓库里 。文章来源地址https://www.toymoban.com/news/detail-850922.html
到了这里,关于关于大数据与Hadoop的基础认知的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!