C++设计模式:单例模式(十)

这篇具有很好参考价值的文章主要介绍了C++设计模式:单例模式(十)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、单例设计模式
  • 单例设计模式,使用的频率比较高,整个项目中某个特殊的类对象只能创建一个

  • 并且该类只对外暴露一个public方法用来获得这个对象。

  • 单例设计模式又分懒汉式和饿汉式,同时对于懒汉式在多线程并发的情况下存在线程安全问题

    • 饿汉式:类加载的准备阶段就会将static变量、代码块进行实例化,最后只暴露一个public方法获得实例对象。

    • 懒汉式:当需要用到的时候再去加载这个对象。这时多线程的情况下可能存在线程安全问题

  • 对于饿汉式这里不做具体的解释,本节只讨论多线程与懒汉式的线程安全问题

2、单线程下的懒汉模式
2.1、单例对象的创建:
  • 将类指针对象进行静态私有化,并且在类外初始化这个对象为空;静态能保证的是这个对象属于这个类不属于任何一个对象

  • 私有化空构造器防止可以实例化对象

  • 对外暴露一个public方法获取该对象,如果在获取时发现该对象为空,那么进行实例化,否则直接返回

  • 因此可以看到实例化只有一次,多次获取到的对象的地址属于同一个

  • 可以通过内部类的方式进行析构

    • 首先在单例类内部进行私有化一个内部类
    • 对外暴露的public获取instance的对象接口在new实例化对象的时候创建一个内部类静态成员
    • 内部类静态成员的好处是只有一份
    • 当作用域结束时内部类就会负责析构掉主类的静态成员对象
class Single_Instance {
private:
    static Single_Instance *instance;
    Single_Instance() {

    }
    Single_Instance(const Single_Instance & s){

    }
    class inner_class {
    public:
        ~inner_class(){
            if(Single_Instance::instance){
                delete Single_Instance::instance;
                Single_Instance::instance = NULL;
                std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;
            }
        }
    };
public:
    static Single_Instance *get_Instance(){
        if(instance == NULL){
            instance = new Single_Instance();
            static inner_class innerClass;
        }
        return instance;
    }
    void func(){
        std::cout << "func(), &instance = " << instance << std::endl;
    }
};
Single_Instance *Single_Instance::instance = NULL;
3、单例模式与多线程
  • 单例模式的对象可能会被多个线程使用,但是又必须保证这个单例的对象只有一份

  • 不能重复创建、也必须保证这个对象在多线程使用过程中不会因为创建而产生数据安全问题,即多线程抢占的创建这一个对象

class Single_Instance {
private:
    static Single_Instance *instance;
    Single_Instance() {

    }
    Single_Instance(const Single_Instance & s){

    }
    class inner_class {
    public:
        ~inner_class(){
            if(Single_Instance::instance){
                delete Single_Instance::instance;
                Single_Instance::instance = NULL;
                std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;
            }
        }
    };
public:
    static Single_Instance *get_Instance(){
        if(instance == NULL){
            instance = new Single_Instance();
            static inner_class innerClass;
        }
        return instance;
    }
    void func(){
        std::cout << "func(), &instance = " << instance << std::endl;
    }
};
Single_Instance *Single_Instance::instance = NULL;

void thread_func()
{
    std::cout << "子线程开始执行了" << std::endl;
    Single_Instance *instance = Single_Instance::get_Instance();
    std::cout << "thread_func, &instance = " << instance << std::endl;
    std::cout << "子线程执行结束了" << std::endl;
}

void test2()
{
    std::thread mythread1(thread_func);
    std::thread mythread2(thread_func);
    std::thread mythread3(thread_func);
    std::thread mythread4(thread_func);
    mythread1.join();
    mythread2.join();
    mythread3.join();
    mythread4.join();
}

C++设计模式:单例模式(十),设计模式,单例模式,c++,设计模式

可以看到实例化不止一个单例对象,这一现象违反了单例的思想,因此需要在多线程抢占创建时进行互斥(mutex)

3.1、解决方案(一)
  • 使用互斥量的方式,对线程访问获取对象进行阻塞
  • 但是不难发现问题,其实这个对象只创建一次,之后的访问单纯的获取这个对象也要进行加锁逐个排队访问临界区,这一现象导致效率极低
std::mutex mutex_lock;
static Single_Instance *get_Instance(){
    std::unique_lock<std::mutex> uniqueLock(mutex_lock);
    if(instance == NULL){
        instance = new Single_Instance();
        static inner_class innerClass;
    }
    return instance;
}
3.2、解决方式(二)

双重检查机制(DCL)进行绝对安全解决

  • 双重检查:
    • 首先在锁外面加入一个if判断,判断这个对象是否存在,如果存在就没有必要上锁创建,直接返回即可
    • 如果对象不存在,首选进行加锁,然后在if判断对象是否存在,这个if的意义在于当多个线程阻塞在mutex锁头上时
    • 突然有一个线程1创建好了,那么阻塞在mutex锁头上的线程2、3、4…都不用再继续创建,因此在加一个if判断

这里还需要解释一下volatile关键字:

  • volatile关键字的作用是防止cpu指令重排序,重排序的意思就是干一件事123的顺序,cpu可能重排序为132

  • 为什么需要防止指令重排序,因为对象的new过程分为三部曲:

    (1)分配内存空间、(2)执行构造方法初始化对象、(3)将这个对象指向这个空间;

    由于程序运行CPU会进行指令的重排序,如果执行的指令是132顺序,A线程执行完13之后并没有完成对象的初始化、而这时候转到B线程;B线程认为对象已经实例化完毕、其实对象并没有完成初始化!产生错误文章来源地址https://www.toymoban.com/news/detail-851114.html

static Single_Instance *get_Instance(){
    if(instance == NULL){
        std::unique_lock<std::mutex> uniqueLock(mutex_lock);
        if(instance == NULL){
            instance = new Single_Instance();
            static inner_class innerClass;
        }
    }
    return instance;
}
3.3、解决方案(三)
  • 但volatile关键字并不跨平台,而在C++11中提供了一种新的标准来解决这一问题,并且跨平台
  • 可以通过atomic原子类来保证
    • 将对象声明为原子类的指针
    • std::atomic_thread_fence(std::memory_order_acquire):获取内存屏蔽的屏障,关闭reorder
    • std::atomic_thread_fence(std::memory_order_release):将instance对象创建完毕之后进行解开内存屏障
    • instance.store(tmp, std::memory_order_relaxed):将对象store到内存中。
  • Atomic类主要通过CAS锁来实现的,具体点击这里
class Single_Instance {
private:
    std::atomic<Single_Instance*> instance;
    Single_Instance() {

    }
    Single_Instance(const Single_Instance & s){

    }
public:
    Single_Instance *get_Instance(){
        Single_Instance *tmp = instance.load(std::memory_order_relaxed);
        std::atomic_thread_fence(std::memory_order_acquire);
        if(tmp == NULL){
            std::unique_lock<std::mutex> uniqueLock(mutex_lock);
            tmp = instance.load(std::memory_order_relaxed);
            if(tmp == NULL){
                tmp = new Single_Instance();
                std::atomic_thread_fence(std::memory_order_release);
                instance.store(tmp, std::memory_order_relaxed);
            }
        }
        return tmp;
    }
};

到了这里,关于C++设计模式:单例模式(十)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++设计模式创建型之单例模式

    一、概述         单例模式也称单态模式,是一种创建型模式,用于创建只能产生一个对象实例的类。例如,项目中只存在一个声音管理系统、一个配置系统、一个文件管理系统、一个日志系统等,甚至如果吧整个Windows操作系统看成一个项目,那么其中只存在一个任务管理

    2024年02月14日
    浏览(36)
  • 【C++】特殊类设计(单例模式)

    设计模式是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的总结。 使用设计模式的目的:为了代码可重用性、让代码更容易被他人理解、保证代码可靠性。 根本原因是为了代码复用,增加可维护性。 设计模式的例子:迭代器模式 拷贝一共就只有两个场景,一

    2023年04月22日
    浏览(43)
  • C++特殊类设计(单例模式)

    C++98 将拷贝构造函数与赋值运算符重载只声明不定义,并且将其访问权限设置为私有即可。 原因: 设置成私有:如果只声明没有设置成private,用户自己如果在类外定义了,就可以不能禁止拷贝了 只声明不定义:不定义是因为该函数根本不会调用,定义了其实也没有什么意义

    2024年01月19日
    浏览(36)
  • 【C++】特殊类设计+单例模式+类型转换

    需要云服务器等云产品来学习Linux的同学可以移步/--腾讯云--/--阿里云--/--华为云--/官网,轻量型云服务器低至112元/年,新用户首次下单享超低折扣。   目录 一、设计一个类,不能被拷贝 1、C++98 2、C++11 二、设计一个类,只能在堆上创建对象 1、将构造设为私有 2、将析构设为

    2024年02月06日
    浏览(42)
  • 【C++高阶(八)】单例模式&特殊类的设计

    💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:C++从入门到精通⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学习C++   🔝🔝 在实际场景中,总会遇见一些特殊情况, 比如设计一个类,只能在堆上开辟空间, 亦或者是设计一个类只能实例化一个对象 在实际需求的场景

    2024年02月04日
    浏览(37)
  • C++面试:单例模式、工厂模式等简单的设计模式 & 创建型、结构型、行为型设计模式的应用技巧

            理解和能够实现基本的设计模式是非常重要的。这里,我们将探讨两种常见的设计模式:单例模式和工厂模式,并提供一些面试准备的建议。 目录 单例模式 (Singleton Pattern) 工厂模式 (Factory Pattern) 面试准备  1. 理解设计模式的基本概念 2. 掌握实现细节 3. 讨论优缺

    2024年02月01日
    浏览(55)
  • C++中特殊类的设计与单例模式的简易实现

    对于这种特殊类的设计我们一般都是优先考虑私有构造函数。 然后对于一些特殊要求就直接通过静态成员函数的实现来完成。  这里选择禁掉拷贝构造函数和拷贝函数是为了防止将已创建的对象去拷贝构造新的对象。  这里如果没有禁掉operator new和operator delete的话就会导致以

    2024年01月18日
    浏览(36)
  • 从C语言到C++_37(特殊类设计和C++类型转换)单例模式

    目录 1. 特殊类设计 1.1 不能被拷贝的类 1.2 只能在堆上创建的类 1.3 只能在栈上创建的类 1.4 不能被继承的类 1.5 只能创建一个对象的类(单例模式)(重点) 1.5.1 饿汉模式 1.5.2 懒汉模式 2. 类型转换 2.1 static_cast 2.2 reinterpret_cast 2.3 const_cast 2.4 dynamic_cast 3. RTTI(了解)和类型转换常见面

    2024年02月10日
    浏览(34)
  • 懒汉单例设计模式与饿汉单例设计模式

    单例模式即一个类确保只有一个对象,主要用于避免浪费内存 1 .饿汉单例设计模式 :拿到对象时,对象就早已经创建好了 写法: 把类的构造器私有 在类中自己创建一个对象,并赋值到一个变量 定义一个静态方法,返回自己创建的这个对象 2. 懒汉单例设计模式 :第一次拿到对象时

    2024年02月21日
    浏览(43)
  • 【设计模式】单例设计模式

    目录 1、前言 2、基本语法 2.1、懒汉式单例 2.2、饿汉式单例 2.3、双重检验锁单例模式 2.4、静态内部类单例模式 2.5、枚举单例模式 2.6、ThreadLocal单例模式 2.7、注册单例模式 3、使用场景 4、使用示例 5、常见问题 5、总结 单例模式是一种设计模式,它确保一个类只能创建一个实

    2024年02月09日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包