算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和

这篇具有很好参考价值的文章主要介绍了算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这几道题对于我们前面讲过的一维、二维前缀和进行了运用,包含了面对特殊情况的反操作

目录

4.除自身以外数组的乘积

4.1解析

4.2题解

5.和为K的子数组

5.1解析

5.2题解

6.和可被K整除的子数组

6.1解析

6.2题解

7.连续数组

7.1题解

7.2题解

8.矩阵区域和

8.1解析

8.2题解



4.除自身以外数组的乘积

题目:. - 力扣(LeetCode)

4.1解析

这道题实际上和前一道"中心下标"的题目非常相似,只不过这道题要求的是"前缀积"和后缀积

那么我们用f来表示前缀积:

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和,Java,算法,哈希算法,算法

如图所示:f[i] 表示 i之前所有元素之积(不包括i元素),那么f[i] = f[i-1] * nums[i-1];

同理,如果我们用g 表示 i之后所有元素的积(不包括i元素),那么g[i] = g[i + 1] * nums[i+1]

其中有细节问题:

当i= 0时,是表示0之前所有元素之积,但是0之前没有元素了,我们前面是设0之前的元素为0,但是由于这道题是求积,那么应该设为1,即f[0] = g[n-1] = 1(n为数组长度)

在创建前缀和数组和后缀和数组后,我们仅需要遍历数组,计算f[i] * g[i]即可

4.2题解
class Solution {
     public int[] productExceptSelf(int[] nums) {
         int n = nums.length;
         int[] f = new int[n];
         int[] g = new int[n];
         f[0] = g[n-1] = 1;
         for(int i = 1; i < n; i++){
             f[i] = f[i-1] * nums[i-1];
         }
         for(int i = n-2; i >= 0; i--){
             g[i] = g[i+1] * nums[i+1];
         }
         int[] ans = new int[n];
         for(int i = 0; i < n; i++){
             ans[i] = f[i] * g[i];
         }
         return ans;
     }
 }

5.和为K的子数组

题目:. - 力扣(LeetCode)

5.1解析

看到"子数组"可能我们会想到利用双指针(滑动窗口)来做,但是实际上这道题利用滑动窗口是不行的

我们前面遇到的滑动窗口题目,left和right指针都是往同一个方向移动,但是由于这道题出现了0 和 负数,那么就会出现right往回走的情况,滑动窗口的优势就没有了

实际上我们应该想到的是前缀和的算法思想,但是前缀和记录的是从原点到某个位置的所有元素的和,但是我们要求的是某一段子区间.

类似这种题目,我们可以转变一下思路:

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和,Java,算法,哈希算法,算法

如图所示,我们可以通过计算i位置之前,满足sum[j] = sum[i] - k的点的个数,这样侧面求出来满足子区间元素和为k的个数

但是有几个细节问题:

(1) 我们怎么知道i前面满足条件的前缀和有几个?? 是从0位置开始遍历判断吗??很显然,这样做的时间复杂度将会不如暴力解法

我们可以利用哈希表来记录,某一个前缀和的值,以及出现的个数,这样但我们在判断i之前多少个前缀和满足 sum[j] = sum[i] - k时,只需要从hash表中直接拿值即可

(2)如果我们利用哈希表来存储,那么就会出现一个问题:

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和,Java,算法,哈希算法,算法

假设数组是上图这样的,k=0,那么显然 第一个 0 就可以作为满足情况的子数组之一,但是我们在遍历的时候是从第一个开始记录的,当记录第一个元素之前哈希表中是没有值的.因此我们需要先让哈希表里面有一个0的值,为1,即hash.put(0,1).这样,我们判断第一个数的时候,加入满足要求,就count++;

(3)既然我们不用重新回头遍历数组,那么实际上前缀和数组也没必要创建,因为都在哈希表中记录着,那么我们就仅需要设置一个变量记录当前的前缀和是多少即可

这么讲实际上有点抽象,我们通过代码来演示:

5.2题解
 class Solution {
     public int subarraySum(int[] nums, int k) {
         Map<Integer,Integer> map = new HashMap<>();
         map.put(0,1);
         int sum = 0, count = 0;
         for(int i = 0; i < nums.length; i++){
         sum += nums[i];
         count += map.getOrDefault(sum-k,0);
         map.put(sum,map.getOrDefault(sum,0)+1);
         }
         return count;
     }
 }

6.和可被K整除的子数组

题目:. - 力扣(LeetCode)

6.1解析

要想做这道题,需要有两个前提知识点的补充:

(1)同余定理

如果(a - b) % == 0 ,那么a % p == b % p

(2)java 对于负数取余,符号是取决于左边数的正负.但是对于同余定理,这样的规则是不满足的,举个例子: (3 - (-2)) % 5 == 0,那么根据同余定理,就有 3 % 5 == -2 % 5,但是在java / c++很显然这样是不满足的.因此我们就要进行修正,就相当于我们如何让 3 % 5 == -2 % 5 在java中取余是成立的?? 我们可以这样操作: 让 a % p 后 假设 p,如 -2 % 5 + 5 就能得到3,但是这样正负不统一,因为正数 % 正数本来就是正数,不需要修正,修正了结果反而不对,我们只需在计算结果后面再 % p即可, 因此最后取余的表达式为:( a % p + p) % p

理解完上述的两个知识点后,我们回到这道题:

还是一样,由于出现了负数和 0 ,导致用滑动窗口算法不行的; 既然提到了子数组的和,我们不妨试试前缀和算法

和上一道题一样,前缀和记录的是从原点到某个位置的所有元素的和,但是我们要求的是某一段子区间.我们就可以利用前面讲到的方法转变一下思路:

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和,Java,算法,哈希算法,算法

我们要求的是满足(sum[i] - x) % k == 0的子区间的个数,这个式子不就是 同余定理左边的式子吗,那么就一定有 sum[i] % k == x % k,至于sum[i] 和 x就都是我们熟悉的前缀和了

我们就可以使用和上一题一样的方法来解决这道题,但是有一个注意事项

还是一样,假设我们第一个数就是满足条件的子数组,那么我们就要在第一个数前面找到一个子区间的元素和也能被k整除(实际上就是0),但是前面没有元素了,哈希表中没有存放任何值,那么这种情况就会漏掉.因此我们要在一开始就在哈希表中存放0这个值,即hash.put(0,1)

6.2题解
 
class Solution {
     public int subarraysDivByK(int[] nums, int k) {
         Map<Integer,Integer> hash = new HashMap<>();
         int count = 0;
         hash.put(0,1);
         int sum = 0;
         for(int i = 0; i < nums.length; i++){
             sum += nums[i];
             int r = (sum % k + k) % k;
             count += hash.getOrDefault(r,0);
             hash.put(r,hash.getOrDefault(r,0)+1);
         }
         return count;
     }
 }

7.连续数组

题目:. - 力扣(LeetCode)

7.1题解

此题要我们找出最长一段子区间,满足区间中0 的个数和1的个数是一样的,那么这道题能不能使用滑动窗口去做呢?答案是不行的.因为数组中存在0,right指针是可能会回头的;那么我们转变一下思路,我们尝试把数组里面的0全部换成-1,那么当一段子区间的元素和为0的时候,就一定满足1的个数和0的个数一样,那么这样的话,我们就把问题转回求一段子区间的元素和为0的问题,那么就和我们前面的两道题一样

但是有几个细节问题:

1.这道题求的是最长的子区间,但是我们之前求的都是数量.因此这道题我们要改变哈希表的存储内容

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和,Java,算法,哈希算法,算法

假设我们遍历到i,那么这时候就要在前面找到一个子区间的长度也为sum,这时候就会出现两种情况

(1)哈希表里面没有sum,即在这之前的所有前缀和没有一个为sum的,这时候我们只需要将他存储在哈希表中即可,由于是要长度,那么我们哈希表的值就要存这个点的下标

(2)如果哈希表中存在,那么就要更新我们最终返回的长度,但是哈希表中的值是不需要修改的.因为我们要的是最长的子区间,那么我们在寻找的时候就要找最短前缀和,由于我们是从前往后遍历,那么此前如果存有sum,那么一定是最短的前缀和,此时对应子区间就最长

2.对于边界的处理

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和,Java,算法,哈希算法,算法

假设我们的数组是这样的,那么不难发现,整个数组就是满足条件的一种情况,按照我们前面的思路,那么这个时候就要在0下标之前找到一个前缀和为0的区间,但是实际上没有区间了,因此我们既要预处理,在下标为-1的位置存放前缀和为0的值

7.2题解
 
class Solution {
     public int findMaxLength(int[] nums) {
         Map<Integer,Integer> hash = new HashMap<>();
         int len = 0;
         int sum = 0;
         hash.put(0,-1);
         for(int i = 0; i < nums.length; i++){
             sum += nums[i] == 0 ? -1 : 1;//将所有的0变成-1
             if(hash.containsKey(sum)){
                 len = Math.max(len,i-hash.get(sum));
             }else{
                 hash.put(sum,i);
             }
         }
         return len;
     }
 }

8.矩阵区域和

题目:. - 力扣(LeetCode)

8.1解析

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和,Java,算法,哈希算法,算法

如图所示,题目实际上就是要求给定二维数组中,每个坐标从(i - k ,j-k) d到 (i+k,j+k)之间的元素之和,那么这不就是我们之前讲过的前缀和吗

(1)预处理dp数组

我们还是预处理一个dp数组,其中dp[i] [j]表示从原点到 (i,j)之间的元素之和.我们前面推导过:dp[i] [j] = dp[i-1] [j] + dp[i] [j - 1] + arr[i] [j] - dp[i-1] [j-1],但是注意:我们前面推导这个公式的前提是arr数组的下标是从1开始的,但是这道题的数组是给定的,从0开始的,印象我们需要修改公式:dp[i] [j] = dp[i-1] [j] + dp[i] [j - 1] + arr[i-1] [j-1] - dp[i-1] [j-1],那么我们就可以利用这个公式对dp数组进行初始化

(2)使用dp数组

接下来我们就要使用dp数组,我们也推导过.计算计算(x1, y1) ~ (x2, y2)的元素和的公式为:dp[x2] [y2] - dp[x1-1] [y2] - dp[x2] [y1 -1] + dp[x1-1] [y1-1],当我们创建一个返回数组ret的时候,那么ret[i] [j] 就是 (i - k ,j-k) d到 (i+k,j+k),但是要注意边界条件,即小于0的范围我们是当成0处理的,同样大于n-1的也是一样,那么我们的范围就需要改成:(max(i - k,0) , max(j-k,0) ) ~ (min(i + k,n-1) , min(j+k,n-1) );这样我们就直接省去了超出范围的情况

(3)下标映射关系

最后还有一个细节问题,就是ret数组和dp数组的下标映射关系,由于我们dp数组的下标是从1开始的,但是我们返回的ret数组的下标必须是从0开始的,因此实际上我们dp数组的下标是比ret数组的下标大1的,即在dp上的(i,j)实际上对应ret数组上的是(i-1,j-1)文章来源地址https://www.toymoban.com/news/detail-851444.html

8.2题解
       
public int[][] matrixBlockSum(int[][] mat, int k) {
             int n = mat.length;
             int m = mat[0].length;
             int[][] dp = new int[n+1][m+1];
             int[][] ret = new int[n][m];
             for(int i = 1; i <= n; i++){
                 for(int j = 1; j <= m; j++){
                     dp[i][j] = dp[i-1][j] + dp[i][j-1] + mat[i-1][j-1] - dp[i-1][j-1];
                 }
             }
             for(int i = 0; i < n; i++){
                 for(int j = 0; j < m; j++){
                     int x1 = Math.max(i-k,0)+1, y1 = Math.max(j-k,0)+1;
                     int x2 = Math.min(i+k,n-1)+1, y2 = Math.min(j+k,m-1)+1;
                     ret[i][j] = dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1];
                 }
             }
             return ret;
         }

到了这里,关于算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 238. 除自身以外数组的乘积

    给你一个整数数组 nums ,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums 之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请**不要使用除法,**且在 O(*n*) 时间复杂度内完成此题。 示例 1: 示例 2: 提示:

    2024年02月10日
    浏览(39)
  • leetcode238:除自身以外数组的乘积

    在leetcode上刷到了这一题,一开始并没有想到好的解题思路,写篇博客再来梳理一下吧。 题目要求: 不使用除法 在O(n)时间复杂度内 该方法分以下几步: 先遍历数组,求数组所有元素的乘积sum 再遍历一遍数组,使用sum除以该下标对应的元素,将结果放在answer数组中 相较于第

    2024年01月16日
    浏览(47)
  • 【Leetcode】238.除自身以外数组的乘积

    给你一个整数数组 nums ,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums 之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法 ,且在 O(n) 时间复杂度内完成此题。 示例1: 示例2: 提示:

    2024年01月22日
    浏览(39)
  • 238. 除自身以外数组的乘积 --力扣 --JAVA

    给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内。 请不要使用除法,且在 O(n) 时间复杂度内完成此题。 最简单的是把所有元素相乘

    2024年02月08日
    浏览(40)
  • 除自身以外数组的乘积(c语言详解)

            给你一个整数数组 nums ,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据保证数组 nums 之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法 ,且在 O(n) 时间复杂度内完成此题。 提示:  2 =

    2024年02月10日
    浏览(41)
  • 【LeetCode-中等题】238. 除自身以外数组的乘积

    双指针暴力查找(需考虑begin == end 和begin == end ==i) 的情况 ----- 力扣示例超出时间限制 相比较上面的做法,使用最终答案数组代替其中一个缀积,然后再计算缀积相乘的时候,使用一个累乘变量来记录某一个前缀和,最后只开辟了一个数组来存最终答案,复杂度为O(1)

    2024年02月11日
    浏览(45)
  • Leetcode:238. 除自身以外数组的乘积【题解超详细】

    纯C语言实现(小白也能看明白) 题目 给你一个整数数组  nums ,返回  数组  answer  ,其中  answer[i]  等于  nums  中除  nums[i]  之外其余各元素的乘积  。 题目数据  保证  数组  nums 之中任意元素的全部前缀元素和后缀的乘积都在   32 位  整数范围内。 请 不要使用除

    2024年02月11日
    浏览(35)
  • 【C语言】每日一题(除自身以外数组的乘积)

    添加链接描述,链接奉上 暴力循换真的是差生法宝,简单好懂,就是不实用,大多数的题目都会超过时间限制(无奈) 思路: 1.写一个除自身的数组乘积函数 2.利用 for循环遍历数组 , i 作为循环变量,当遍历到 i 时,就求出除 i 以外的数组乘积 3.放入返回数组中 代码实现

    2024年02月10日
    浏览(39)
  • 【LeetCode】替换空格&&消失的数字&&分割链表&&除自身以外数组的乘积

    ​🌠 作者:@阿亮joy. 🎆 专栏: 《阿亮爱刷题》 🎇 座右铭:每个优秀的人都有一段沉默的时光,那段时光是付出了很多努力却得不到结果的日子,我们把它叫做扎根 请实现一个函数,把字符串 s 中的每个空格替换成\\\"%20\\\"。 示例 1: 输入: s = \\\"We are happy.\\\" 输出: \\\"We%20are%2

    2024年02月22日
    浏览(36)
  • 和为 K 的子数组——前缀和+哈希

    题目链接:力扣 注意:此题不能使用滑动窗口,因为数组中可能会出现负数。也就是说右指针向后移1位不能保证区间会增大,左指针向后移1位也不能保证区间和会减小。给定左右指针的位置没有二段性 已知sum[i]是从nums[0~i]的和,sum[i-1]是nums[0~i-1]的和 则有 sum[i] - sum[i-1] =

    2024年02月16日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包