个人名片:
🐼作者简介:一名大三在校生,喜欢AI编程🎋
🐻❄️个人主页🥇:落798.
🐼个人WeChat:hmmwx53
🕊️系列专栏:🖼️
- 零基础学Java——小白入门必备🔥
- 重识C语言——复习回顾🔥
- 计算机网络体系———深度详讲
- HCIP数通工程师-刷题与实战🔥🔥🔥
- 微信小程序开发——实战开发🔥
- HarmonyOS 4.0 应用开发实战——实战开发🔥🔥🔥
- Redis快速入门到精通——实战开发🔥🔥🔥
- RabbitMQ快速入门🔥
🐓每日一句:🍭我很忙,但我要忙的有意义!
欢迎评论 💬点赞👍🏻 收藏 📂加关注+
标题
一、 什么是机器学习?
机器通过分析大量数据来进行学习。比如说,不需要通过编程来识别猫或人脸,它们可以通过使用图片来进行训练,从而归纳和识别特定的目标。
二、机器学习和人工智能的关系
机器学习是一种重在寻找数据中的模式并使用这些模式来做出预测的研究和算法的门类。机器学习是人工智能领域的一部分,并且和知识发现与数据挖掘有所交集。
三、机器学习的工作方式
①选择数据:将你的数据分成三组:训练数据、验证数据和测试数据
②模型数据:使用训练数据来构建使用相关特征的模型
③验证模型:使用你的验证数据接入你的模型
④测试模型:使用你的测试数据检查被验证的模型的表现
⑤使用模型:使用完全训练好的模型在新数据上做预测
⑥调优模型:使用更多数据、不同的特征或调整过的参数来提升算法的性能表现
四、机器学习的本质
基本思路:无论使用什么样的算法和数据,机器学习的基本思路都可以归结为以下三个核心步骤。
-
问题抽象与数学建模:把现实生活中的问题抽象成数学模型,并且很清楚模型中不同参数的作用
-
模型求解与学习:利用数学方法对这个数学模型进行求解,从而解决现实生活中的问题
-
模型评估与反馈:评估这个数学模型,是否真正地解决了现实生活中的问题,以及解决的效果如何?
AI、ML、DL三者的关系:人工智能是最广泛的概念,机器学习是实现人工智能的一种方法,而深度学习则是机器学习中的一种特定技术。
-
人工智能(AI):这是最广泛、最上层的概念。人工智能的目标是让计算机能够执行需要人类智能才能完成的复杂任务。
-
机器学习(ML):作为人工智能的一个子领域,机器学习是实现人工智能目标的一种方法。它研究如何通过算法使计算机能够从数据中学习并做出预测或决策,而无需进行明确的编程。
-
深度学习(DL):深度学习是机器学习领域中的一种特定技术,它受到了人脑结构的启发,使用人工神经网络来模拟人类神经网络的工作原理。深度学习通过构建多层神经网络来处理和分析复杂的数据,能够自动地提取数据中的高层次特征。
五、机器学习的原理
机器学习的原理:机器学习是通过使用带有标签的训练集数据,识别和提取特征,建立预测模型,并将所学规律应用于新数据进行预测或分类的过程。
训练集:提供标签化的数据,用于训练模型。例如,识字卡片帮助小朋友了解汉字与特征的关系。
特征:数据中的可测量属性,用于区分不同类别。如“一条横线”帮助区分汉字“一”。
建模:通过算法从数据中学习,构建预测模型。小朋友通过重复学习建立汉字认知模型。
模型应用:学习到的规律用于新数据预测或分类。学会识字后,小朋友能识别并区分不同汉字。
机器学习的步骤:收集数据、数据准备、选择模型、训练、评估、参数调整和预测。
六、分类与算法
机器学习的分类:根据训练方法可以分为3大类,监督学习、非监督学习、强化学习。
监督学习
定义:提供带有正确答案标签的数据集,让机器学习如何计算正确答案。
示例:通过标记猫和狗的照片来训练机器识别猫和狗。
特点:需要人工标签,学习效果较好,但成本较高。
非监督学习
定义:提供没有标签的数据集,让机器挖掘潜在的数据结构或分类。
示例:将未标记的猫和狗照片给机器,让其自行分类。
特点:无需人工标签,机器自行发现数据规律,但结果解释性较弱。
强化学习
定义:智能体通过与环境互动,学习在不同状态下采取最佳行为以获得最大累积回报。
示例:AlphaStar 通过强化学习训练,在星际争霸游戏中战胜职业选手。
特点:模拟生物学习过程,有望实现更高智能,关注智能体的决策过程。
机器学习的算法:15种经典机器学习算法
监督学习算法:
-
线性回归:一种用于预测连续数值型输出的统计方法,通过找到最佳拟合直线来描述自变量和因变量之间的关系。
-
逻辑回归:虽然名字中有“回归”,但它实际上是一种分类算法,用于预测二分类或多分类的结果,通过逻辑函数将线性回归的输出映射到概率空间。
-
线性判别分析:一种降维技术,同时也用于分类,它通过找到最能区分不同类别的方向来投影数据。
-
决策树:一种直观易懂的分类与回归算法,通过树状结构对数据进行划分,每个节点代表一个属性判断,最终到达叶节点得到预测结果。
-
朴素贝叶斯:基于贝叶斯定理和特征之间独立的假设来进行分类的算法,简单高效但有时会受限于其独立性假设。
-
K邻近:一种基于实例的学习,它的思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。
-
学习向量量化:一种基于神经网络的聚类方法,通过训练来优化码本(即聚类中心),使得每个输入样本都能被最近邻的码字所代表。
-
支持向量机:在高维空间中寻找一个超平面来分隔不同类别的数据,并且使得分隔的间隔最大化,对于非线性问题也可以通过核函数映射到高维空间来解决。
-
随机森林:通过构建多个决策树并结合它们的预测结果来提高整体预测性能的集成学习方法。
-
AdaBoost:一种自适应增强算法,通过组合多个弱分类器来构建一个强分类器,每个弱分类器都关注之前分类器错误分类的样本。
非监督学习算法:
-
高斯混合模型:假设所有数据点都是由一定数量的高斯分布混合而成的,通过EM算法来估计每个高斯分布的参数以及它们的权重。
-
限制波尔兹曼机:一种生成式随机神经网络,可用于降维、特征学习、预训练和分类等任务,是深度学习领域的重要组件之一。
-
K-means 聚类:一种简单且广泛使用的聚类算法,它将数据划分为K个不同的簇,每个簇的中心是所有属于这个簇的数据点的均值。
-
最大期望算法:一种迭代优化技术,用于在统计模型中找到可能性最大的参数估计,常用于处理数据中的缺失值或隐藏变量。
欢迎评论 💬点赞👍🏻 收藏 📂加关注+
文章来源:https://www.toymoban.com/news/detail-851446.html
欢迎添加微信,加入我的核心小队,请备注来意
👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇文章来源地址https://www.toymoban.com/news/detail-851446.html
到了这里,关于【机器学习】数据驱动的未来:机器学习的原理与算法探索的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!