大模型的学习 LLaMa和ChatGLM,minichatgpt4

这篇具有很好参考价值的文章主要介绍了大模型的学习 LLaMa和ChatGLM,minichatgpt4。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

LLaMa和ChatGLM,minichatgpt4

什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?

答:Bert 的模型由多层双向的Transformer编码器组成,由12层组成,768隐藏单元,12个head,总参数量110M,约1.15亿参数量。NLU(自然语言理解)任务效果很好,单卡GPU可以部署,速度快,V100GPU下1秒能处理2千条以上。

ChatGLM-6B, LLaMA-7B模型分别是60亿参数量和70亿参数量的大模型,基本可以处理所有NLP任务,效果好,但大模型部署成本高,需要大显存的GPU,并且预测速度慢,V100都需要1秒一条。

微调方法是啥?如何微调?

答:当前主流微调方法分为:Fine-tune和prompt-tune

fine-tune,也叫全参微调,bert微调模型一直用的这种方法,全部参数权重参与更新以适配领域数据,效果好。

prompt-tune, 包括p-tuning、lora、prompt-tuning、adaLoRA等delta tuning方法,部分模型参数参与微调,训练快,显存占用少,效果可能跟FT(fine-tune)比会稍有效果损失,但一般效果能打平。文章来源地址https://www.toymoban.com/news/detail-851649.html

到了这里,关于大模型的学习 LLaMa和ChatGLM,minichatgpt4的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 导出LLaMA ChatGlm2等LLM模型为onnx

    通过onnx模型可以在支持onnx推理的推理引擎上进行推理,从而可以将LLM部署在更加广泛的平台上面。此外还可以具有避免pytorch依赖,获得更好的性能等优势。 这篇博客(大模型LLaMa及周边项目(二) - 知乎)进行了llama导出onnx的开创性的工作,但是依赖于侵入式修改transform

    2024年02月13日
    浏览(42)
  • LLaMA、Baichuan、ChatGLM、Qwen、天工等大模型对比

    12.10更新:Qwen技术报告核心解读 Baichuan 2: Open Large-scale Language Models 数据处理:数据频率和质量,使用聚类和去重方法,基于LSH和dense embedding方法 tokenizer:更好的压缩率,对数字的每一位分开,添加空格token 位置编码:7B Rope,13B ALiBi 使用了SwiGLU激活函数,因为SwiGLU是一个双线

    2024年01月17日
    浏览(55)
  • 什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?

    选择使用哪种大模型,如Bert、LLaMA或ChatGLM,取决于具体的应用场景和需求。下面是一些指导原则: Bert模型:Bert是一种预训练的语言模型,适用于各种自然语言处理任务,如文本分类、命名实体识别、语义相似度计算等。如果你的任务是通用的文本处理任务,而不依赖于特定

    2024年04月10日
    浏览(38)
  • 关于生成式语言大模型的一些工程思考 paddlenlp & chatglm & llama

    生成式语言大模型,随着chatgpt的爆火,市场上涌现出一批高质量的生成式语言大模型的项目。近期百度飞桨自然语言处理项目paddlenlp发布了2.6版本。更新了以下特性:全面支持主流开源大模型Bloom, ChatGLM, GLM, Llama, OPT的训练和推理;Trainer API新增张量训练能力, 简单配置即可开

    2024年02月12日
    浏览(44)
  • LLaMA-Factory可视化界面微调chatglm2;LoRA训练微调模型 简单案例

    参考:https://github.com/huggingface/peft https://github.com/hiyouga/LLaMA-Factory 类似工具还有流萤,注意是做中文微调训练这块;来训练微调的chatglm2需要完整最新文件,不能是量化后的模型;另外测试下来显卡资源要大于20来G才能顺利,这边T4单卡训练中间显存不足,需要开启4bit量化才行

    2024年02月05日
    浏览(55)
  • ChatGLM-LLaMA-chinese-insturct 学习记录(含LoRA的源码理解)

    介绍:探索中文instruct数据在ChatGLM, LLaMA等LLM上微调表现,结合PEFT等方法降低资源需求。 Github: https://github.com/27182812/ChatGLM-LLaMA-chinese-insturct 补充学习:https://kexue.fm/archives/9138 优雅下载hugging face模型和数据集 配置conda 环境 数据集 belle数据集 和 自己收集的中文指令数据集 指令

    2024年02月11日
    浏览(39)
  • LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM-2/LLaMA-2/Baichuan等】的高效工具【预训练+指令监督微

    LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM-2/LLaMA-2/Baichuan等】的高效工具【预训练+指令监督微调+奖励模型训练+PPO 训练+DPO 训练】)的简介、安装、使用方法之详细攻略 目录 相关文章 LLMs之ChatGLM:ChatGLM Efficient Tuning(一款高效微调ChatGLM-6B/Ch

    2024年02月08日
    浏览(44)
  • 大突破!本地大模型接入微软Autogen,多专家Agent共事成现实!支持llama2+chatglm,附代码!

    跑通!跑通!全程跑通! 雄哥认为未来agent的终局大概率是一个人,管理部门多个AI Agent同时工作,人力将解放! 想象一下,你翘个二郎腿,偌大的办公室,只有你一个人,喊一句:“做个月度计划”,他自动分析上月数据,整合现有资源,做本月的规划,人场地资金!做完

    2024年02月06日
    浏览(62)
  • LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM2/LLaMA2/Baichuan等】的高效工具【预训练+指令监督微调+

    LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM-2/LLaMA-2/Baichuan等】的高效工具【预训练+指令监督微调+奖励模型训练+PPO 训练+DPO 训练】)的简介、安装、使用方法之详细攻略 目录 相关文章 LLMs之ChatGLM:ChatGLM Efficient Tuning(一款高效微调ChatGLM-6B/Ch

    2024年02月09日
    浏览(70)
  • 人工智能 | Llama大模型:与AI伙伴合二为一,共创趣味交流体验

    Llama 大模型介绍 我们介绍 LLaMA,这是一个基础语言模型的集合,参数范围从 7B 到 65B。我们在数万亿个Token上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。特别是,LLaMA-13B 在大多数基准测试中都优于

    2024年02月03日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包