MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记

这篇具有很好参考价值的文章主要介绍了MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2. 问题定义
时间序列关系数据(Time Series Relation Data)

这个数据是存放在关系型数据库中,每一条记录都是泰永时间搓的行为。

更具体地,每条记录表示为 x = ( v , t , x 1 , x 2 , … , x m − 2 ) x = (v,t,x_1,x_2,\dots,x_{m-2}) x=(v,t,x1,x2,,xm2),其中 v v v代表带时间戳的行为, t t t是时间戳,𝑥𝑖代表其他属性,例如设备ID和会话持续时间。

针对时间序列关系数据的欺诈检测(Fraud Detection over Time Series Relation Data)

每一个用户 u ∈ U u \in U uU都会有一些列的行为 V = { v 0 , v 1 , … , v n − 1 } V = \{v_0, v_1, \dots, v_{n-1}\} V={v0,v1,,vn1}其中 v i ∈ V v_{i} \in V viV代表的是用户的行为, n n n是序列的长度。用户的行为数据,也就是 V V V通常是按照时间顺序进行呈现的,目的是根据用户的历史顺序行为数据确定用户是否有可以行为,这个任务可以被构建为一个二分类任务

时间感知行为图

给定一个具有带时间戳的行为序列 V = { v 0 , v 1 , … , v n − 1 } V = \{v_0, v_1, \dots, v_{n-1}\} V={v0,v1,,vn1}及相应的属性的用户,其时间感知行为图定义为 G = { V , E , A } G = \{V, E, A\} G={V,E,A}, 其中 V V V代表行动节点, E E E是边, A ∈ R n ∗ n ( 0 ≤ A i , j ≤ 1 ) A \in R^{n*n}(0 \leq A_{i,j} \leq 1) ARnn(0Ai,j1)是图卷积矩阵(graph convolutional matrix)。图中的每个节点 V i V_i Vi代表一条记录,每条边< v i , v j v_i, v_j vi,vj>的权重与 v i v_i vi代表一条记录,每条边< v i v_i vi, v j v_j vj>的权重与 v i v_i vi v j v_j vj之间的时间差成反比。

图卷积矩阵(Graph Convolutional Matrix)

GCN计算所有邻近节点(包含节点本身)的节点特征的胶圈平均值。权重矩阵被称为图卷积矩阵。在时间感知行为图中,构建了一个时间感知的图卷积矩阵来模拟行动之间的相互依赖性。更具体地说,第 i i i个节点和第 j j j个节点之间的归一化边权重是
A ~ i , j = ρ ∣ t i − t j ∣ ∑ k = 0 n − 1 ρ ∣ t i − t k ∣ \widetilde{A}_{i,j}=\frac{\rho^{|t_i-t_j|}}{\sum_{k=0}^{n-1}\rho^{|t_i-t_k|}} A i,j=k=0n1ρtitkρtitj
,其中 0 < ρ < 1 0 < \rho <1 0<ρ<1 是控制每个目标节点接受场的范围的超参数。

3. MINT框架

MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记,论文阅读,笔记

3.1 提取用户的时间信息,构建具有三个不同视角的时间感知行为图。

MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记,论文阅读,笔记

MINT的数据预处理模块由图卷积矩阵构造器节点嵌入构造器组成。

  1. 将每一个行为表示为一个带有相应属性的节点特征
  2. 根据算法1构建三个具有不同接收计算的图卷积助阵,这个主要是 ρ \rho ρ的数值不相同。
  3. 更深的图卷积层会聚合更多的邻域信息(图四中的蓝色节点)到目的节点。
  4. 每一层中表示的是某一个用户的所有行为,按照的是时间段进行排序,然后,每一个节点的中的属性,例如时间,设备等等,会放入MLP中,输入的维度为 d d d,表示的是一个节点(也就是一个行为)的特征。
  5. 初始的行为嵌入表示为 H ( 0 ) ∈ R n ∗ d H^{(0)} \in R^{n*d} H(0)Rnd,其中 n n n是节点的数量, d d d表示输入嵌入的维度。
3.2 多视图卷积网络
3.2.1 多视图图卷积

在每一层图卷积中,特征聚合如下执行:
h N ( v i ) ( l ) = ∑ v j ∈ N ( v i ) A v i , v j ( l ) ∗ h v j ( l − 1 ) \mathbf{h}_{\mathcal{N}(v_i)}^{(l)}=\sum_{v_j\in\mathcal{N}(v_i)}\mathbf{A}_{v_i,v_j}^{(l)}*\mathbf{h}_{v_j}^{(l-1)} hN(vi)(l)=vjN(vi)Avi,vj(l)hvj(l1)
我们现在知道, H ( 0 ) = [ h v 0 ( 0 ) , h v 1 ( 0 ) , … , h v n − 1 ( 0 ) ] H^{(0)} = [h_{v_0}^{(0)},h_{v_1}^{(0)},\dots,h_{v_{n-1}}^{(0)}] H(0)=[hv0(0),hv1(0),,hvn1(0)],这个是初始化的特征,通过节点的属性经过 M L P MLP MLP获取的,

h N ( v i ) ( l ) \mathbf{h}_{\mathcal{N}(v_i)}^{(l)} hN(vi)(l)表示的是第 l l l层中行动节点 v i v_i vi的聚合邻居表示, A v i , v j ( l ) \mathbf{A}_{v_i,v_j}^{(l)} Avi,vj(l)表示的是在第 l l l层中行动节点 v j v_j vj到节点 v i v_i vi的归一化聚合系数。粗俗一点说也就是第 l l l层的节点特征是通过第 l − 1 l-1 l1层的节点特征*第 l l l层中的图卷积矩阵

然后,对于他自己聚合邻居节点候得特征计算方式如下:
h v i ( l ) = L e a k y R e L U ( W ( l ) h N ( v i ) ( l ) ) \mathbf{h}_{v_i}^{(l)}=LeakyReLU(\mathbf{W}^{(l)}\mathbf{h}_{\mathcal{N}(v_i)}^{(l)}) hvi(l)=LeakyReLU(W(l)hN(vi)(l))
L e a k y R e L U LeakyReLU LeakyReLU的激活函数公式如下所示,一般的 R e L U ReLU ReLU函数会将小于0的数值变成0,但是 L e a k y R e L U LeakyReLU LeakyReLU会将小于0的数值变成极小值
f ( x ) = { x   i f   x > 0 α x   i f   x ≤ 0 f(x)=\begin{cases}x&\mathrm{~if~}x>0\\\alpha x&\mathrm{~if~}x\leq0&\end{cases} f(x)={xαx if x>0 if x0
可以看见其中的 W ( l ) ∈ R d ∗ d \mathbf{W}^{(l)} \in R^{d*d} W(l)Rdd是第 l l l层转换函数中的可训练参数矩阵。

3.2.2 门控邻居交互

MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记,论文阅读,笔记

在这一节中,作者推翻了上一小节讲述的东西,现在说的是上一小节的做法会存在过平滑问题

仅仅依赖时间间隔信息的信息聚合方法会导致严重的过平滑问题。也就是说,一些常见的行为,如‘访问主页’,在用户的行为数据中出现的频率远高于其他行为。导致用户的表示会被常见的行为信息所主导,从而降低欺诈检测的性能。我们将这个问题称为是过平滑问题。为了解决这个问题,我们尝试从邻居节点中尝试去聚合更有用的信息,作者设计了一个门控邻居交互机制。

首先对于第 l l l层中行动节点 v i v_i vi的聚合邻居表示 h N ( v i ) ( l ) \mathbf{h}_{\mathcal{N}(v_i)}^{(l)} hN(vi)(l),变成了如下公式进行解决:
h ^ N ( v i ) ( l ) = LayerNorm ( σ ( h v i ( 0 ) ) ⊙ t a n h ( h N ( v i ) ( l ) ) ) \widehat{\mathrm{h}}_{\mathcal{N}(v_i)}^{(l)}=\text{LayerNorm}(\sigma(\mathrm{h}_{v_i}^{(0)})\odot tanh(\mathrm{h}_{\mathcal{N}(v_i)}^{(l)})) h N(vi)(l)=LayerNorm(σ(hvi(0))tanh(hN(vi)(l)))
其中,他把初始化的通过节点属性输入进 M L P MLP MLP中的特征的输出结果,输出进了 σ \sigma σ函数中,其中 σ \sigma σ函数的公式如下:
σ ( x ) = 1 1 + e − x \sigma(x)=\frac1{1+e^{-x}} σ(x)=1+ex1
他是把输入的 x x x输出为一个[0-1]的数值,这样做的目的可能是引入非线性函数去捕获更加复杂的信息。

然后 t a n h ( x ) tanh(x) tanh(x)的结构如下所示:
tanh ⁡ ( x ) = e x − e − x e x + e − x \tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} tanh(x)=ex+exexex
他的输出范围在[-1,1],通过这样的方式去保持中心化,也可以改善梯度流

采用 L a y e r N o r m LayerNorm LayerNorm也是为了缓解梯度爆炸或者梯度消失的问题。

最后,在第 l l l层中的节点特征 h v i ( l ) \mathbf{h}_{v_i}^{(l)} hvi(l)被表示为:
h v i ( l ) = L e a k y R e L U ( W ( l ) h ^ N ( v i ) ( l ) ) \mathbf{h}_{v_i}^{(l)}=LeakyReLU(\mathbf{W}^{(l)}\widehat{\mathbf{h}}_{\mathcal{N}(v_i)}^{(l)}) hvi(l)=LeakyReLU(W(l)h N(vi)(l))

读出层

MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记,论文阅读,笔记

我们为了从行为嵌入矩阵中【 H ( l ) = [ h v 0 ( l ) , h v 1 ( l ) , … , h v n − 1 ( l ) ] H^{(l)} = [h_{v_0}^{(l)},h_{v_1}^{(l)},\dots,h_{v_{n-1}}^{(l)}] H(l)=[hv0(l),hv1(l),,hvn1(l)],】生成意图嵌入向量,设计了一个最大池化层和基于注意力机制的读出层,如图5所示。我们通过最大池化层去获取最显著的特征,我们称为嵌入相关的意图表示: h e ( 0 ) , h e ( 1 ) , h e ( 2 ) , h e ( 3 ) h_e^{(0)}, h_e^{(1)}, h_e^{(2)},h_e^{(3)} he(0),he(1),he(2),he(3),然后再运用注意力机制去融合在嵌入维度上保持最显著的行为。

对于每个试图,与行为相关的意图表示如下获得:
α ( l ) = ϕ a t t ( h e ( l ) , H ( l ) ) = h e ( l ) ⊺ W a t t H ( l ) \alpha^{(l)}=\phi_{att}(\mathbf{h}_{e}^{(l)},\mathbf{H}^{(l)})=\mathbf{h}_{e}^{(l)^{\intercal}}\mathbf{W}^{att}\mathbf{H}^{(l)} α(l)=ϕatt(he(l),H(l))=he(l)WattH(l)
h e ( l ) ⊺ ∈ R d ∗ n \mathbf{h}_{e}^{(l)^{\intercal}} \in R^{d*n} he(l)Rdn| W a t t ∈ R d ∗ d \mathbf{W}^{att} \in R^{d*d} WattRdd| H ( l ) ∈ R n ∗ d H^{(l)} \in R^{n*d} H(l)Rnd => α ( l ) ∈ R n ∗ n \alpha^{(l)} \in R^{n*n} α(l)Rnn

注意力机制计算后的结果:
h a ( l ) = ∑ i = 0 n − 1 α i ( l ) ⋅ h i ( l ) , α i ( l ) ∈ α ( l ) , h i ( l ) ∈ H ( l ) \mathbf{h}_{a}^{(l)}=\sum_{i=0}^{n-1}\alpha_{i}^{(l)}\cdot\mathbf{h}_{i}^{(l)},\alpha_{i}^{(l)}\in\boldsymbol{\alpha}^{(l)},\mathbf{h}_{i}^{(l)}\in\mathbf{H}^{(l)} ha(l)=i=0n1αi(l)hi(l),αi(l)α(l),hi(l)H(l)
α ( l ) ∈ R n ∗ n \alpha^{(l)} \in R^{n*n} α(l)Rnn| h ( l ) ∈ R n ∗ d \mathbf{h}^{(l)} \in R^{n*d} h(l)Rnd => h a ( l ) ∈ R n ∗ d \mathbf{h}_{a}^{(l)} \in R^{n*d} ha(l)Rnd

最后,该层的每个节点特征为: h ( l ) = h e ( l ) + h a ( l ) . \mathbf{h}^{(l)}=\mathbf{h}_{e}^{(l)}+\mathbf{h}_{a}^{(l)}. h(l)=he(l)+ha(l). 最后 h ( l ) ∈ R n ∗ d \mathbf{h}^{(l)} \in R^{n*d} h(l)Rnd

3.2.3 预测模块 (Prediction Module)

z = C O N C A T E ( [ h ( 0 ) , h ( 1 ) , h ( 2 ) , h ( 3 ) ] ) p = ϕ M L P ( z ) , ϕ M L P : R 4 ∗ d ↦ R \begin{aligned}\mathbf{z}&=CONCATE([\mathbf{h}^{(0)},\mathbf{h}^{(1)},\mathbf{h}^{(2)},\mathbf{h}^{(3)}])\\\\p&=\phi_{MLP}(z),\phi_{MLP}:\mathbb{R}^{4*d}\mapsto\mathbb{R}\end{aligned} zp=CONCATE([h(0),h(1),h(2),h(3)])=ϕMLP(z),ϕMLP:R4dR文章来源地址https://www.toymoban.com/news/detail-851958.html

到了这里,关于MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读】RevIN - Reversible Instance Normalization for Accurate Time-Series Forecasting Against Distrib

    发表信息:ICLR 2022 论文地址:https://openreview.net/forum?id=cGDAkQo1C0p 时间序列预测中的主要挑战之一是数据分布漂移问题(distribution shift problem),即数据分布,比如数据的均值方差等,会随着时间而变化,这会给时序预测问题造成一定的难度(这类数据也成为非平稳数据non-sta

    2024年02月14日
    浏览(50)
  • 【论文笔记】SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling

    论文地址:https://arxiv.org/abs/2302.00861 时间序列分析被广泛应用于各个领域。近年来,为了降低标签费用,使各种任务受益, 自我监督式预训练 引起了人们的极大兴趣。一种主流范式是 masked 建模,它通过学习基于未 masked 部分 重构 masked 内容来成功地预训练深度模型。然而,

    2024年01月21日
    浏览(59)
  • 论文阅读 HighlightMe: Detecting Highlights from Human-Centric Videos

    摘要: 我们提出了一种与领域和用户偏好无关的方法来检测以人为中心的视频中的精彩片段摘录。我们的方法适用于视频中多种可观察到的以人为中心的模态的基于图形的表示,例如姿势和面部。我们使用配备时空图卷积的自动编码器网络来检测基于这些模式的人类活动和交

    2024年02月16日
    浏览(42)
  • 论文笔记:Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

    iclr 2024 reviewer 评分 3888 提出了 Time-LLM, 是一个通用的大模型重编程(LLM Reprogramming)框架 将 LLM 轻松用于一般时间序列预测,而无需对大语言模型本身做任何训练 为什么需要时序数据和文本数据对齐:时序数据和文本数据在表达方式上存在显著差异,两者属于不同的模态。

    2024年04月28日
    浏览(73)
  • 论文笔记:Are Transformers Effective for Time Series Forecasting?

    AAAI 2023 oral 自注意力计算是排列不变的(permutation-invariant) 虽然使用各种类型的position embedding和temporal embedding后,会保留一些order信息,但仍然时间信息可能会不可避免地丢失 本文质疑基于Transformer以进行时间序列预测的有效性 现有的基于Transformer的方法,通常比较的baseli

    2024年02月16日
    浏览(37)
  • 【论文阅读】MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecastin

    论文标题:MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecastin 论文链接: https://doi.org/10.48550/arXiv.2401.00423 代码链接: https://github.com/YoZhibo/MSGNet 发表年份: 2024 发表平台: AAAI 平台等级:CCF A 作者信息: Wanlin Cai 1 ^1 1 , Yuxuan Liang 2 ^2 2 , Xianggen Liu 1 ^1 1 , Jianshuai Fen

    2024年04月15日
    浏览(54)
  • 【时间序列综述】Transformer in Time Series:A Survey 论文笔记

    文章全名:Transformers in Time Series: A Survey 文章链接:[论文地址]([2202.07125v2] Transformers in Time Series: A Survey (arxiv.org)) 来源:IJCAI 2023 完成单位:阿里巴巴达摩院、上海交通大学 Transformer在自然语言处理和计算机视觉领域都取得了诸多成果,Transformer的捕获长距离依赖和交互的能力

    2024年04月26日
    浏览(45)
  • A Time Series is Worth 64 Words(PatchTST模型)代码解析

    A Time Series is Worth 64 Words论文下载地址,Github项目地址,论文解读系列 本文针对PatchTST模型参数与模型架构开源代码进行讲解,本人水平有限,若出现解读错误,欢迎指出 开源代码中分别实现了监督学习( PatchTST_supervised )与自监督学习( PatchTST_self_supervised )框架,本文仅针对监

    2024年02月07日
    浏览(46)
  • 【论文阅读】iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

    论文链接 :[2310.06625] iTransformer: Inverted Transformers Are Effective for Time Series Forecasting (arxiv.org) 作者 :Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long 单位 :清华大学,蚂蚁集团 代码 :https://github.com/thuml/iTransformer 引用 :Liu Y, Hu T, Zhang H, et al. itransformer: Inverted

    2024年04月27日
    浏览(37)
  • VARMA(Vector Auto Regressive Moving Average) in Time Series Modelling

    ARIMA是针对单一变量进行建模的方法,当我们需要进行多变量时序建模时,需要使用VAR and VMA and VARMA模型。 VAR:Vector Auto-Regressive, a generalization of the auto-regressive model for multivariate time series where the time series is stationary and we consider only the lag order ‘p’ in the modelling VMA:Vector Mov

    2024年04月28日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包