SMS垃圾短信识别项目

这篇具有很好参考价值的文章主要介绍了SMS垃圾短信识别项目。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

项目背景

随着数字通信的快速发展,垃圾短信成为了一个普遍而烦人的问题。这些不请自来的消息不仅打扰了我们的日常生活,还可能包含诈骗和欺诈的风险。因此,有效地识别并过滤垃圾短信变得至关重要。

项目目标

本项目的主要目标是开发一个机器学习模型,能够自动、准确地区分垃圾短信和正常短信。通过训练模型识别典型的垃圾短信特征,我们可以大大减少垃圾短信对用户的干扰,并提高通信的安全性和效率。

项目应用

  1. 邮件服务提供商: 自动过滤垃圾短信,保护用户免受不必要的打扰和潜在的欺诈风险。
  2. 企业通信: 在内部通信系统中部署,确保员工不会因垃圾短信而分散注意力,提高工作效率。
  3. 个人用户: 为个人用户提供一个工具或应用程序,帮助他们在日常生活中自动识别和过滤垃圾短信。

数据集详情

“垃圾邮件”的概念多种多样:产品/网站广告、快速赚钱计划、连锁信、色情内容……

垃圾短信集合是一组为垃圾短信研究而收集的带有 SMS 标记的消息。 它包含一组 5,574 条英文 SMS 消息,根据垃圾邮件(合法)或垃圾邮件进行标记。

SMS垃圾短信识别项目,python,人工智能

模型选择

为了实现垃圾短信的有效识别,我们考虑了以下几种机器学习算法:

  1. 逻辑回归(Logistic Regression): 提供快速、有效的分类,适合基准模型。
  2. 朴素贝叶斯(Naive Bayes): 在文本分类任务中表现出色,尤其是在短信长度有限的情况下。
  3. 支持向量机(SVC): 适用于复杂的文本数据,能够处理高维空间。
  4. 随机森林(Random Forest): 一个强大的集成学习方法,可以提供准确的分类结果。

依赖库

在开发过程中,我们使用了以下Python库:

  • pandas: 数据处理和分析。
  • numpy: 数值计算。
  • nltk: 自然语言处理。
  • re: 正则表达式,用于文本数据清洗。
  • sklearn: 提供机器学习算法和数据预处理工具。

代码实现

import pandas as pd 
import re
from nltk.corpus import stopwords

加载数据

df = pd.read_csv('spam.csv')
df.head()
v1 v2 Unnamed: 2 Unnamed: 3 Unnamed: 4
0 ham Go until jurong point, crazy.. Available only ... NaN NaN NaN
1 ham Ok lar... Joking wif u oni... NaN NaN NaN
2 spam Free entry in 2 a wkly comp to win FA Cup fina... NaN NaN NaN
3 ham U dun say so early hor... U c already then say... NaN NaN NaN
4 ham Nah I don't think he goes to usf, he lives aro... NaN NaN NaN
# 获取有用的数据(前两列)
df = df[['v2', 'v1']]
# df.rename(columns={'v2': 'messages', 'v1': 'label'}, inplace=True)
df = df.rename(columns={'v2': 'messages', 'v1': 'label'})
df.head()
messages label
0 Go until jurong point, crazy.. Available only ... ham
1 Ok lar... Joking wif u oni... ham
2 Free entry in 2 a wkly comp to win FA Cup fina... spam
3 U dun say so early hor... U c already then say... ham
4 Nah I don't think he goes to usf, he lives aro... ham

数据预处理


# 检查的空值
df.isnull().sum()
messages    0
label       0
dtype: int64
STOPWORDS = set(stopwords.words('english'))

def clean_text(text):
    # 转化成小写
    text = text.lower()
    # 移除特殊字符
    text = re.sub(r'[^0-9a-zA-Z]', ' ', text)
    # 移除多余空格
    text = re.sub(r'\s+', ' ', text)
    # 移除停用词
    text = " ".join(word for word in text.split() if word not in STOPWORDS)
    return text
# 清洗数据
df['clean_text'] = df['messages'].apply(clean_text)
df.head()
messages label clean_text
0 Go until jurong point, crazy.. Available only ... ham go jurong point crazy available bugis n great ...
1 Ok lar... Joking wif u oni... ham ok lar joking wif u oni
2 Free entry in 2 a wkly comp to win FA Cup fina... spam free entry 2 wkly comp win fa cup final tkts 2...
3 U dun say so early hor... U c already then say... ham u dun say early hor u c already say
4 Nah I don't think he goes to usf, he lives aro... ham nah think goes usf lives around though

数据与标签划分

X = df['clean_text']
y = df['label']
y = df['label']

模型训练

from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report
from sklearn.feature_extraction.text import CountVectorizer , TfidfTransformer

def classify(model, X, y):
    # train test split
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42, shuffle=True, stratify=y)
    # model training
    pipeline_model = Pipeline([('vect', CountVectorizer()),
                              ('tfidf', TfidfTransformer()),
                              ('clf', model)])
    pipeline_model.fit(x_train, y_train)
    
    print('Accuracy:', pipeline_model.score(x_test, y_test)*100)
    
#     cv_score = cross_val_score(model, X, y, cv=5)
#     print("CV Score:", np.mean(cv_score)*100)
    y_pred = pipeline_model.predict(x_test)
    print(classification_report(y_test, y_pred))
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
classify(model, X, y)
Accuracy: 96.8413496051687
              precision    recall  f1-score   support

         ham       0.97      1.00      0.98      1206
        spam       0.99      0.77      0.87       187

    accuracy                           0.97      1393
   macro avg       0.98      0.88      0.92      1393
weighted avg       0.97      0.97      0.97      1393
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB()
classify(model, X, y)
Accuracy: 96.69777458722182
              precision    recall  f1-score   support

         ham       0.96      1.00      0.98      1206
        spam       1.00      0.75      0.86       187

    accuracy                           0.97      1393
   macro avg       0.98      0.88      0.92      1393
weighted avg       0.97      0.97      0.96      1393
from sklearn.svm import SVC
model = SVC(C=3)
classify(model, X, y)
Accuracy: 98.27709978463747
              precision    recall  f1-score   support

         ham       0.98      1.00      0.99      1206
        spam       1.00      0.87      0.93       187

    accuracy                           0.98      1393
   macro avg       0.99      0.94      0.96      1393
weighted avg       0.98      0.98      0.98      1393
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
classify(model, X, y)
Accuracy: 97.4156496769562
              precision    recall  f1-score   support

         ham       0.97      1.00      0.99      1206
        spam       1.00      0.81      0.89       187

    accuracy                           0.97      1393
   macro avg       0.99      0.90      0.94      1393
weighted avg       0.97      0.97      0.97      1393

代码与数据集下载

详情请见SMS垃圾短信识别项目-VenusAI (aideeplearning.cn)文章来源地址https://www.toymoban.com/news/detail-852110.html

到了这里,关于SMS垃圾短信识别项目的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(92)
  • 毕业设计选题:基于机器学习的虚假新闻识别系统 人工智能 python

      目录  前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 机器学习 2.2 深度学习  三、检测的实现 3.1 数据集 3.3 实验及结果分析 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精

    2024年01月19日
    浏览(74)
  • 毕业设计:基于机器学习的课堂学生表情识别系统 人工智能 python 目标检测

    目录 前言 项目背景 数据集 设计思路 更多帮助     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充

    2024年04月16日
    浏览(114)
  • 人工智能实战项目(python)+多领域实战练手项目

    大家好,我是微学AI,本项目将围绕人工智能实战项目进行展开,紧密贴近生活,实战项目设计多个领域包括:金融、教育、医疗、地理、生物、人文、自然语言处理等;帮助各位读者结合机器学习与深度学习构建智能而且实用的人工智能简单系统,创建有影响力的AI应用,项

    2024年02月02日
    浏览(53)
  • 毕业设计选题:基于机器学习的虚假新闻识别系统--以繁花为例 人工智能 python

      目录  前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 机器学习 2.2 深度学习  三、检测的实现 3.1 数据集 3.3 实验及结果分析 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精

    2024年02月02日
    浏览(59)
  • 【毕业设计】基于深度学习的道路裂缝识别算法系统 python 卷积神经网络 人工智能

    目录  前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 卷积神经网络 2.1 YOLOv5算法 三、道路裂缝检测的实现 3.1 数据集 3.2 实验环境及参数设置  3.2 实验及结果分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后

    2024年03月24日
    浏览(79)
  • 毕业设计:基于机器学习的草莓成熟度识别分类系统 人工智能 python 目标检测

    目录 前言 项目背景 数据集 设计思路 更多帮助     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充

    2024年04月27日
    浏览(81)
  • Python开源项目之人工智能老照片修复算法学习

    老旧或者破损的照片如何修复呢?本文主要分享一个博主使用后非常不错的照片恢复开源项目:Bringing-Old-Photos-Back-to-Life。 项目的Github地址:项目地址 我们先看看官方给出的效果图: 就算现在看到这张图,我仍然觉着非常惊艳。下面我会把项目环境安装部署,到最后使用的

    2024年02月03日
    浏览(67)
  • 毕业设计-基于深度学习玉米叶病虫害识别系统 YOLO python 机器学习 目标检测 人工智能 算法

    目录 前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 卷积神经网络 2.2 YOLOv5算法 三、检测的实现 3.1 数据集 3.2 实验环境搭建 3.3 实验及结果分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准

    2024年02月03日
    浏览(116)
  • 基于Solr的智能化人工智能与智能图像识别

    作者:禅与计算机程序设计艺术 引言 1.1. 背景介绍 随着人工智能技术的快速发展,人工智能与图像识别应用越来越广泛。在实际应用中,基于Solr的智能化人工智能与智能图像识别技术具有很高的实用价值和可行性。 1.2. 文章目的 本文旨在讲解如何基于Solr实现智能化人工智

    2024年02月07日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包