新版mmdetection3d将3D bbox绘制到图像

这篇具有很好参考价值的文章主要介绍了新版mmdetection3d将3D bbox绘制到图像。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

环境信息

使用 python mmdet3d/utils/collect_env.py收集环境信息

sys.platform: linux
Python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:21) [GCC 9.4.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0,1: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.8.1+cu111
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.0.5
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 

TorchVision: 0.9.1+cu111
OpenCV: 4.6.0
MMEngine: 0.9.1
MMDetection: 3.2.0
MMDetection3D: 1.3.0+9d3e162
spconv2.0: True

以前写过mmdetection3d中的可视化,但mmdetection3d更新后代码已经不适用了,正好我把我的工作全转移到新版mmdetection3d上来了,因此重新写了一下推理结果可视化。整体思路还是构建模型、构建数据、推理、绘制,下面分步讲解

1、构建模型

我用jupyter实现,首先需要确保jupyter的工作路径在mmdetection3d的工作路径下,不然会存在找不到mmdet3d的问题

import sys
import os
import torch
import cv2
import numpy as np

# 添加工作路径,不然找不到mmdet3d
os.chdir('/home/wistful/work/open_mmlab_mmdetection3d')
sys.path.append('/home/wistful/work/open_mmlab_mmdetection3d')


# load config
config_file = 'configs/point_cls_voxel/pointpillars_hv_secfpn_8x2-160e_kitti-3d-3class.py'
checkpoint_file = '/home/wistful/work/open_mmlab_mmdetection3d/work_dirs/pointpillars_hv_secfpn_8x2-160e_kitti-3d-3class/epoch_80.pth'

# 构建模型
from mmdet3d.apis import init_model, inference_detector
device = 'cuda:0'
model = init_model(config_file, checkpoint=checkpoint_file, device=device)

至此模型已经构建,下一步是构建数据,送入模型以获取推理结果

2、构建数据

新版mmdet3d的模型输入分为两个部分batch_inputs_dict, batch_data_samplesbatch_inputs_dict包含了模型推理所需的数据(点云、图像),batch_data_samples包含了训练时需要的bbox等信息。因此,需要构建batch_inputs_dict,我写了一个简单的函数,可以调用

build_dataloader.py文件:

from mmdet3d.registry import DATASETS
from tools.misc.browse_dataset import build_data_cfg
from mmengine.registry import init_default_scope


def load_datasets(config_file, aug=False, set='train'):
    """
    Args:
        config_file: 配置文件路径
        aug:是否数据增强(待测试)
        set:要读取的数据集,'train','test','val'

    Returns:
    """
    cfg = build_data_cfg(config_file, aug=aug, cfg_options=None)
    init_default_scope(cfg.get('default_scope', 'mmdet3d'))
    # 选择需要读取的数据集
    if set == 'train':
        dataloader = cfg.train_dataloader.dataset
    elif set == 'val':
        dataloader = cfg.val_dataloader.dataset
    elif set == 'test':
        dataloader = cfg.test_dataloader.dataset

    return DATASETS.build(dataloader)


def build_batch_dict(datasets, batch_size, device, images=False):
    """
    Args:
        device: 指定设备

        datasets: 传入数据集
        batch_size: 批次大小
        images: 加入图像

    Returns:

    """
    # TODO: 编写加入图像的代码
    points = []
    images = []
    batch_data_samples = []
    for i in range(batch_size):
        # 确保在同一个device上
        points.append(datasets[i]['inputs']['points'].to(device))

        data_samples = datasets[i]['data_samples']
        # if data_samples.gt_instances_3d
        if len(data_samples.gt_instances_3d.keys()) != 0:
            data_samples.gt_instances_3d.bboxes_3d = data_samples.gt_instances_3d.bboxes_3d.to(device)
            data_samples.gt_instances_3d.labels_3d = data_samples.gt_instances_3d.labels_3d.to(device)
    batch_inputs_dict = dict()
    batch_inputs_dict['points'] = points

    # batch_data_samples = data_samples
    return batch_inputs_dict, batch_data_samples


def cyclic_load_data_item(datasets, index, device, images=False):
    """
    Args:
        device: 指定设备
        datasets: 传入数据集
        index: 索引
        images: 加入图像

    Returns:
        单条数据,适用于循环遍历整个数据集
    """
    # TODO: 编写加入图像的代码
    points = []
    images = []
    points.append(datasets[index]['inputs']['points'].to(device))

    batch_inputs_dict = dict()
    batch_inputs_dict['points'] = points

    data_samples = datasets[index]['data_samples']
    if len(data_samples.gt_instances_3d.keys()) !=0:
        data_samples.gt_instances_3d.bboxes_3d = data_samples.gt_instances_3d.bboxes_3d.to(device)
        data_samples.gt_instances_3d.labels_3d = data_samples.gt_instances_3d.labels_3d.to(device)
    batch_data_samples = [data_samples]
    return batch_inputs_dict, batch_data_samples

下面利用这个函数,实现构建数据集

# 构建数据集
from custom_API.build_dataloader import load_datasets # 我放在了custom_API路径下,如何导入取决于读者如何存放
 
set = 'test'
dataset_config = '配置文件路径'
# set字段表示构建的数据集
datasets = load_datasets(dataset_config, aug=False, set=set) # aug字段表示不使用数据增强

至此,datasets为一个列表,长度就是数据集的总样本数。eg:datasets[0]里面就包含了第1个样本的全部信息,下面可以看一下输出

mmdet3d将3d框投影到图像,3d,计算机视觉,目标检测,3D目标检测

3、推理与绘制

我们已经得到了整个数据集,那么我们就可以使用数据集中的任意一条数据进行推理,根据这个思路,我们也能很方便的推理完整个数据集。绘制部分的代码我使用的是旧版mmdetection3d中的代码,下面是代码:

# draw_box.py
import os

from custom_API.draw_utils import draw_lidar_bbox3d_on_img, draw_depth_bbox3d_on_img, draw_camera_bbox3d_on_img
import mmcv
from os import path as osp
import numpy as np

def show_multi_modality_result(img,
                               gt_bboxes,
                               pred_bboxes,
                               batch_data_samples,
                               out_dir,
                               filename,
                               type='train',
                               box_mode='lidar',
                               img_metas=None,
                               show=False,
                               gt_bbox_color=(61, 102, 255),
                               pred_bbox_color=(241, 101, 72)):
    """Convert multi-modality detection results into 2D results.
    将3D边框投影到2D图像平面并且可视化
    Project the predicted 3D bbox to 2D image plane and visualize them.

    Args:
        img (np.ndarray): The numpy array of image in cv2 fashion.
        gt_bboxes (:obj:`BaseInstance3DBoxes`): Ground truth boxes.
        pred_bboxes (:obj:`BaseInstance3DBoxes`): Predicted boxes.
        proj_mat (numpy.array, shape=[4, 4]): The projection matrix # 投影矩阵
            according to the camera intrinsic parameters.
        out_dir (str): Path of output directory.
        filename (str): Filename of the current frame.
        box_mode (str, optional): Coordinate system the boxes are in.
            Should be one of 'depth', 'lidar' and 'camera'.
            Defaults to 'lidar'.
        img_metas (dict, optional): Used in projecting depth bbox.
            Defaults to None.
        show (bool, optional): Visualize the results online. Defaults to False.
        颜色为B G R,不是RGB!!!
        gt_bbox_color (str or tuple(int), optional): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (255, 102, 61).
        pred_bbox_color (str or tuple(int), optional): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (72, 101, 241).
    """
    # 根据传入3D框所处的坐标系调用对应的投影方法,获取投影框
    if box_mode == 'depth':
        draw_bbox = draw_depth_bbox3d_on_img
    elif box_mode == 'lidar':
        draw_bbox = draw_lidar_bbox3d_on_img
    elif box_mode == 'camera':
        draw_bbox = draw_camera_bbox3d_on_img
    else:
        raise NotImplementedError(f'unsupported box mode {box_mode}')

    # 在out_dir下创建每个文件名字的文件夹
    # result_path = osp.join(out_dir, filename)
    # mmcv.mkdir_or_exist(result_path)
    out_dir = out_dir + type + '/'
    # 判断目录是否存在
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    else:
        pass
        # os.makedirs(out_dir)
    # mmcv.mkdir_or_exist(result_path)

    # if score_thr > 0:
    #     inds = pred_scores > score_thr
    #     pred_bboxes = pred_bboxes[inds]
    # 获取投影矩阵
    proj_mat = batch_data_samples[0].lidar2img
    proj_mat = proj_mat[0]
    proj_mat = np.array(proj_mat)
    if show:
        show_img = img.copy()
        if gt_bboxes is not None:
            show_img = draw_bbox(
                gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)
        if pred_bboxes is not None:
            show_img = draw_bbox(
                pred_bboxes,
                show_img,
                proj_mat,
                img_metas,
                color=pred_bbox_color)
        mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)

    if img is not None:
        # print('写入原图像')
        mmcv.imwrite(img, osp.join(out_dir, f'{filename}.png'))

    if gt_bboxes is not None:
        # 写入地面真相
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        mmcv.imwrite(gt_img, osp.join(out_dir, f'{filename}_gt.png'))

    if pred_bboxes is not None:
        pred_img = draw_bbox(
            pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(pred_img, osp.join(out_dir, f'{filename}_pred.png'))

    if pred_bboxes is not None and gt_bboxes is not None:
        # print('draw_gt_bbox')
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        gt_and_pred_img = draw_bbox(
            pred_bboxes, gt_img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(gt_and_pred_img, osp.join(out_dir, f'{filename}_pred_gt.png'))

# draw_utils.py
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt


def project_pts_on_img(points,
                       raw_img,
                       lidar2img_rt,
                       max_distance=70,
                       thickness=-1):
    """Project the 3D points cloud on 2D image.

    Args:
        points (numpy.array): 3D points cloud (x, y, z) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        max_distance (float, optional): the max distance of the points cloud.
            Default: 70.
        thickness (int, optional): The thickness of 2D points. Default: -1.
    """
    img = raw_img.copy()
    num_points = points.shape[0]
    pts_4d = np.concatenate([points[:, :3], np.ones((num_points, 1))], axis=-1)
    pts_2d = pts_4d @ lidar2img_rt.T

    # cam_points is Tensor of Nx4 whose last column is 1
    # transform camera coordinate to image coordinate
    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=99999)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]

    fov_inds = ((pts_2d[:, 0] < img.shape[1])
                & (pts_2d[:, 0] >= 0)
                & (pts_2d[:, 1] < img.shape[0])
                & (pts_2d[:, 1] >= 0))

    imgfov_pts_2d = pts_2d[fov_inds, :3]  # u, v, d

    cmap = plt.cm.get_cmap('hsv', 256)
    cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255

    for i in range(imgfov_pts_2d.shape[0]):
        depth = imgfov_pts_2d[i, 2]
        color = cmap[np.clip(int(max_distance * 10 / depth), 0, 255), :]
        cv2.circle(
            img,
            center=(int(np.round(imgfov_pts_2d[i, 0])),
                    int(np.round(imgfov_pts_2d[i, 1]))),
            radius=1,
            color=tuple(color),
            thickness=thickness,
        )
    cv2.imshow('project_pts_img', img.astype(np.uint8))

    cv2.waitKey(0)


def plot_rect3d_on_img(img,
                       num_rects,
                       rect_corners,
                       color=(0, 255, 0),
                       thickness=1):
    """Plot the boundary lines of 3D rectangular on 2D images.

    Args:
        img (numpy.array): The numpy array of image.
        num_rects (int): Number of 3D rectangulars.
        rect_corners (numpy.array): Coordinates of the corners of 3D
            rectangulars. Should be in the shape of [num_rect, 8, 2].
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                    (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))
    # thickness = 0.5
    # print('rect_corners type:', rect_corners.dtype)
    # print('img type',type(img))
    for i in range(num_rects):
        corners = rect_corners[i].astype(np.int64)
        # print("opencv corners type:", corners.dtype)

        for start, end in line_indices:
            # cv2.line(img, (corners[start, 0], corners[start, 1]),
            #          (corners[end, 0], corners[end, 1]), color, thickness,
            #          cv2.LINE_AA)
            # print("change:", type(int(corners[start, 0])))
            cv2.line(img,
                     tuple(corners[start]),
                     tuple(corners[end]),
                     color,
                     thickness,
                     cv2.LINE_AA)
            # cv2.line(img,
            #          (int(corners[start, 0]), int(corners[start, 1])),
            #          (int(corners[end, 0]), int(corners[end, 1])),
            #          color,
            #          thickness,
            #          cv2.LINE_AA)

    # return img.astype(np.uint8)
    return img


def draw_lidar_bbox3d_on_img(bboxes3d,
                             raw_img,
                             lidar2img_rt,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`LiDARInstance3DBoxes`):
            3d bbox in lidar coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        img_metas (dict): Useless here.
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    img = raw_img.copy()
    corners_3d = bboxes3d.corners.cpu().numpy()
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3),
         np.ones((num_bbox * 8, 1))], axis=-1)
    lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4)
    if isinstance(lidar2img_rt, torch.Tensor):
        lidar2img_rt = lidar2img_rt.cpu().numpy()
    pts_2d = pts_4d @ lidar2img_rt.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)


# TODO: remove third parameter in all functions here in favour of img_metas
def draw_depth_bbox3d_on_img(bboxes3d,
                             raw_img,
                             calibs,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`DepthInstance3DBoxes`, shape=[M, 7]):
            3d bbox in depth coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        calibs (dict): Camera calibration information, Rt and K.
        img_metas (dict): Used in coordinates transformation.
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    from mmdet3d.structures import points_cam2img
    from mmdet3d.models import apply_3d_transformation

    img = raw_img.copy()
    img_metas = copy.deepcopy(img_metas)
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)

    # first reverse the data transformations
    xyz_depth = apply_3d_transformation(
        points_3d, 'DEPTH', img_metas, reverse=True)

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(xyz_depth,
                               xyz_depth.new_tensor(img_metas['depth2img']))
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)


def draw_camera_bbox3d_on_img(bboxes3d,
                              raw_img,
                              cam2img,
                              img_metas,
                              color=(0, 255, 0),
                              thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`CameraInstance3DBoxes`, shape=[M, 7]):
            3d bbox in camera coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        cam2img (dict): Camera intrinsic matrix,
            denoted as `K` in depth bbox coordinate system.
        img_metas (dict): Useless here.
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    from mmdet3d.structures import points_cam2img

    img = raw_img.copy()
    cam2img = copy.deepcopy(cam2img)
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)
    if not isinstance(cam2img, torch.Tensor):
        cam2img = torch.from_numpy(np.array(cam2img))

    assert (cam2img.shape == torch.Size([3, 3])
            or cam2img.shape == torch.Size([4, 4]))
    cam2img = cam2img.float().cpu()

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(points_3d, cam2img)
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)

下面是推理和绘制的完整代码,必要的注释已经给出。

from custom_API.draw_box import show_multi_modality_result #如何导入取决于读者如何存放
print(f'datasets length:{len(datasets)}')
data_root = 'data/kitti/' # 数据集根路径
save_root = '/home/wistful/work/open_mmlab_mmdetection3d/visual_dir/predict_imgs/' # 保存可视化结果的根路径

data_num = 100  # 最大不能超过数据集长度
# 判断一开始是读取的哪个数据集
if set == 'train' or set == 'val':
    new_set = 'training'
else:
    new_set = 'testing'
# 推理整个数据集的前data_num条数据
for i in tqdm(range(data_num), desc='process situation'):
    # cyclic_load_data_item代码位于第2步
    batch_inputs_dict, batch_data_samples = cyclic_load_data_item(datasets, index=i, device=device)  # 读取一条数据,并构建批次
    points = batch_inputs_dict['points'][0]  # 获取点云,因为是单条数据,所以直接取0

    # 获取检测结果
    result, data = inference_detector(model, points.cpu())
    bboxes_3d = result.pred_instances_3d.bboxes_3d
    labels_3d = result.pred_instances_3d.labels_3d
    scores_3d = result.pred_instances_3d.scores_3d

    # 设置阈值
    thr = 0.4
    score = (scores_3d > thr)
    bboxes_3d = bboxes_3d[score] # 根据阈值筛选

    # 读取原始图像
    img_file_path = data_root + new_set + '/image_2/' + batch_data_samples[0].img_path[0]
    image = cv2.imread(img_file_path)

    img_name = batch_data_samples[0].img_path[0].split('.')[0] # 取一下文件名
    # 保存多模态结果(调用的旧版mmdet代码接口)
    show_multi_modality_result(img=image,
                               box_mode='lidar',
                               gt_bboxes=None,
                               pred_bboxes=bboxes_3d,
                               batch_data_samples=batch_data_samples,
                               out_dir=save_root,
                               filename=img_name,
                               type=set,
                               show=False)

    # result = model(batch_inputs_dict, batch_data_samples) # model的输入与具体模型有关

运行上述代码后,会在设置的save_root下生成可视化图片
mmdet3d将3d框投影到图像,3d,计算机视觉,目标检测,3D目标检测

mmdet3d将3d框投影到图像,3d,计算机视觉,目标检测,3D目标检测文章来源地址https://www.toymoban.com/news/detail-852208.html

到了这里,关于新版mmdetection3d将3D bbox绘制到图像的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • win10 mmdetection3d环境搭建

    官网:mmdetection3d/README_zh-CN.md at master · open-mmlab/mmdetection3d · GitHub 安装过程参照:win10 mmdetection3d 训练KITTI_树和猫的博客-CSDN博客_pointnet训练kitti 官网安装过程 3D目标检测框架综述-知乎中描述了当前3D目标检测的数据和模型状况,为了能将数据和评价标准等统一,介绍了4个比

    2023年04月18日
    浏览(37)
  • 【MMDetection3D】MVXNet踩坑笔记

    原文 代码 MVXNet(CVPR2019) 最近许多关于3D target detection的工作都集中在设计能够使用点云数据的神经网络架构上。虽然这些方法表现出令人鼓舞的性能,但它们通常基于单一模态,无法利用其他模态(如摄像头和激光雷达)的信息。尽管一些方法融合了来自不同模式的数据,这些方

    2024年01月18日
    浏览(48)
  • mmdetection3d系列--(1)安装步骤(无坑版)

      最近在看一些基于点云3d目标检测的文章,需要复现甚至修改一些算法,就找到了mmlab开源的mmdetection3d目标检测框架,方便后续学习。     在安装的时候遇到一点坑,比如环境问题,安装完能跑demo但是不能跑训练测试问题等。在解决问题后还是完成了安装。在这里记录一

    2024年02月02日
    浏览(38)
  • MMDetection3D库中的一些模块介绍

    本文目前仅包含2个体素编码器、2个中间编码器、1个主干网络、1个颈部网络和1个检测头。如果有机会,会继续补充更多模型。 若发现内容有误,欢迎指出。   MMDetection3D的点云数据一般会经历如下步骤/模块:   下面分别介绍每个部分的一些典型模型。   在介绍体素

    2023年04月17日
    浏览(45)
  • MMdetection3D学习系列(一)——环境配置安装

    MMdetion3D是是mmlab在3d目标检测方面提供的相关检测模型,可以实现点云、图像或者多模态数据上的3D目标检测以及点云语义分割。 GitHub地址:https://github.com/open-mmlab/mmdetection3d/ 目前mmdetection3d 支持21种不同的算法,100多个预训练模型,7个数据集: mmdetection3D安装比较简单,之前

    2024年02月01日
    浏览(46)
  • 【MMDetection3D】基于单目(Monocular)的3D目标检测入门实战

    本文简要介绍单目(仅一个摄像头)3D目标检测算法,并使用MMDetection3D算法库,对KITTI(SMOKE算法)、nuScenes-Mini(FCOS3D、PGD算法)进行训练、测试以及可视化操作。   单目3D检测,顾名思义,就是只使用一个摄像头采集图像数据,并将图像作为输入送入模型进,为每一个感兴

    2024年02月03日
    浏览(45)
  • 【利用MMdetection3D框架进行单目3D目标检测(smoke算法】

    mmdetection3d是OpenMMLab开发的3D目标检测开源工具箱,里面包含了许多经典的3D目标检测算法,包含了单目3D目标检测、多目3D目标检测、点云3D目标检测、多模态3D目标检测等各个方向。我们只需要把相应的算法权重下载下来,并调用相应接口即可进行检测。 mmdetection3d的安装需要

    2024年02月13日
    浏览(46)
  • 零基础熟悉mmdetection3d数据提取、模型搭建过程

    本图文从介绍配置文件开始,逐步构建一个新的配置文件,并依次构建相关模型,最终使用一条点云数据简单走了一下处理流程 关于mmdetection3d的安装,参考官方文档安装 — MMDetection3D 1.0.0rc4 文档 1.1 mmdetection3d配置文件的组成 官方文档:教程 1: 学习配置文件 — MMDetection3D 1.

    2024年02月05日
    浏览(59)
  • mmdetection3d可视化多模态模型推理结果

    参考文献: 带你玩转 3D 检测和分割 (三):有趣的可视化 - 知乎 (zhihu.com) Welcome to MMDetection3D’s documentation! — MMDetection3D 1.0.0rc4 文档 让我们看一下ChatGPT的回答[手动狗头]: mmdetection3D是基于PyTorch框架的3D目标检测工具包,它是mmdetection的3D扩展版本。它提供了一个灵活且高效的

    2024年02月16日
    浏览(41)
  • 点云检测框投影到图像上(mmdetection3d)

    原模型检测时候只有点云的检测框,本文主要是将demo文件中的pcd_demo.py中的代码,将点云检测出的3d框投影到图像上面显示。   

    2024年02月13日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包