Yolov5(v5.0) + pyqt5界面设计

这篇具有很好参考价值的文章主要介绍了Yolov5(v5.0) + pyqt5界面设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.下载安装pyqt5工具包以及配置ui界面开发环境

pip install PyQt5
pip install PyQt5-tools

2.点击File->Settings->External Tools进行工具添加,依次进行Qt Designer、PyUIC环境配置.

yolov5 pyqt,qt,python,深度学习,pytorch

 2.1 添加QtDesigner

yolov5 pyqt,qt,python,深度学习,pytorch

 Qt Designer 是通过拖拽的方式放置控件,并实时查看控件效果进行快速UI设计

位置 内容
name 可以随便命名,只要便于记忆就可以,本次采取通用命名:Qt Designer
Program designer.exe路径,一般在python中.\Library\bin\designer.exe
Arguments 固定格式,直接复制也可:$FileDir$\$FileName$
Working directory 固定格式,直接复制也可:$FileDir$

2.2 添加PyUIC

yolov5 pyqt,qt,python,深度学习,pytorch

 PyUIC主要是把Qt Designer生成的.ui文件换成.py文件

位置 内容
name 可以随便命名,只要便于记忆就可以,本次采取通用命名:PyUiC
Program python.exe路径,一般在python安装根目录中
Arguments 固定格式,直接复制也可:-m PyQt5.uic.pyuic $FileName$ -o $FileNameWithoutExtension$.py
Working directory 固定格式,直接复制也可:$FileDir$

3. QtDesigner建立图形化窗口界面 

3.1 在根目录下新建UI文件夹进行UI文件的专门存储,点击Tools->External Tools->Qt Designer进行图形界面创建.

yolov5 pyqt,qt,python,深度学习,pytorch

 3.2 创建一个Main Window窗口

yolov5 pyqt,qt,python,深度学习,pytorch

yolov5 pyqt,qt,python,深度学习,pytorch

yolov5 pyqt,qt,python,深度学习,pytorch

3.3 完成基本界面开发后,保存其为Detect.ui,放置在UI文件夹下,利用PyUic工具将其转化为Detect.py文件。

yolov5 pyqt,qt,python,深度学习,pytorch

yolov5 pyqt,qt,python,深度学习,pytorch

转换完成后,进行相应的槽函数的建立与修改,此处建议直接看我后面给出的demo。

4. demo

使用时只需将parser.add_argument中的'--weights'设为响应权重即可。

# -*- coding: utf-8 -*-

# Form implementation generated from reading ui file '.\project.ui'
#
# Created by: PyQt5 UI code generator 5.9.2
#
# WARNING! All changes made in this file will be lost!
import sys
import cv2
import argparse
import random
import torch
import numpy as np
import torch.backends.cudnn as cudnn

from PyQt5 import QtCore, QtGui, QtWidgets

from utils.torch_utils import select_device
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, scale_coords
from utils.datasets import letterbox
from utils.plots import plot_one_box


class Ui_MainWindow(QtWidgets.QMainWindow):
    def __init__(self, parent=None):
        super(Ui_MainWindow, self).__init__(parent)
        self.timer_video = QtCore.QTimer()
        self.setupUi(self)
        self.init_logo()
        self.init_slots()
        self.cap = cv2.VideoCapture()
        self.out = None
        # self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(*'XVID'), 20.0, (640, 480))

        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', nargs='+', type=str,
                            default='weights/best.pt', help='model.pt path(s)')
        # file/folder, 0 for webcam
        parser.add_argument('--source', type=str,
                            default='data/images', help='source')
        parser.add_argument('--img-size', type=int,
                            default=640, help='inference size (pixels)')
        parser.add_argument('--conf-thres', type=float,
                            default=0.25, help='object confidence threshold')
        parser.add_argument('--iou-thres', type=float,
                            default=0.45, help='IOU threshold for NMS')
        parser.add_argument('--device', default='',
                            help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument(
            '--view-img', action='store_true', help='display results')
        parser.add_argument('--save-txt', action='store_true',
                            help='save results to *.txt')
        parser.add_argument('--save-conf', action='store_true',
                            help='save confidences in --save-txt labels')
        parser.add_argument('--nosave', action='store_true',
                            help='do not save images/videos')
        parser.add_argument('--classes', nargs='+', type=int,
                            help='filter by class: --class 0, or --class 0 2 3')
        parser.add_argument(
            '--agnostic-nms', action='store_true', help='class-agnostic NMS')
        parser.add_argument('--augment', action='store_true',
                            help='augmented inference')
        parser.add_argument('--update', action='store_true',
                            help='update all models')
        parser.add_argument('--project', default='runs/detect',
                            help='save results to project/name')
        parser.add_argument('--name', default='exp',
                            help='save results to project/name')
        parser.add_argument('--exist-ok', action='store_true',
                            help='existing project/name ok, do not increment')
        self.opt = parser.parse_args()
        print(self.opt)

        source, weights, view_img, save_txt, imgsz = self.opt.source, self.opt.weights, self.opt.view_img, self.opt.save_txt, self.opt.img_size

        self.device = select_device(self.opt.device)
        self.half = self.device.type != 'cpu'  # half precision only supported on CUDA

        cudnn.benchmark = True

        # Load model
        self.model = attempt_load(
            weights, map_location=self.device)  # load FP32 model
        stride = int(self.model.stride.max())  # model stride
        self.imgsz = check_img_size(imgsz, s=stride)  # check img_size
        if self.half:
            self.model.half()  # to FP16

        # Get names and colors
        self.names = self.model.module.names if hasattr(
            self.model, 'module') else self.model.names
        self.colors = [[random.randint(0, 255)
                        for _ in range(3)] for _ in self.names]

    def setupUi(self, MainWindow):
        MainWindow.setObjectName("MainWindow")
        MainWindow.resize(800, 600)
        self.centralwidget = QtWidgets.QWidget(MainWindow)
        self.centralwidget.setObjectName("centralwidget")
        self.pushButton = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton.setGeometry(QtCore.QRect(20, 130, 112, 34))
        self.pushButton.setObjectName("pushButton")
        self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_2.setGeometry(QtCore.QRect(20, 220, 112, 34))
        self.pushButton_2.setObjectName("pushButton_2")
        self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_3.setGeometry(QtCore.QRect(20, 300, 112, 34))
        self.pushButton_3.setObjectName("pushButton_3")
        self.groupBox = QtWidgets.QGroupBox(self.centralwidget)
        self.groupBox.setGeometry(QtCore.QRect(160, 90, 611, 411))
        self.groupBox.setObjectName("groupBox")
        self.label = QtWidgets.QLabel(self.groupBox)
        self.label.setGeometry(QtCore.QRect(10, 40, 561, 331))
        self.label.setObjectName("label")
        self.textEdit = QtWidgets.QTextEdit(self.centralwidget)
        self.textEdit.setGeometry(QtCore.QRect(150, 10, 471, 51))
        self.textEdit.setObjectName("textEdit")
        MainWindow.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(MainWindow)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 30))
        self.menubar.setObjectName("menubar")
        MainWindow.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(MainWindow)
        self.statusbar.setObjectName("statusbar")
        MainWindow.setStatusBar(self.statusbar)

        self.retranslateUi(MainWindow)
        QtCore.QMetaObject.connectSlotsByName(MainWindow)

    def retranslateUi(self, MainWindow):
        _translate = QtCore.QCoreApplication.translate
        MainWindow.setWindowTitle(_translate("MainWindow", "演示系统"))
        self.pushButton.setText(_translate("MainWindow", "图片检测"))
        self.pushButton_2.setText(_translate("MainWindow", "摄像头检测"))
        self.pushButton_3.setText(_translate("MainWindow", "视频检测"))
        self.groupBox.setTitle(_translate("MainWindow", "检测结果"))
        self.label.setText(_translate("MainWindow", "TextLabel"))
        self.textEdit.setHtml(_translate("MainWindow",
            "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n"
            "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n"
            "p, li { white-space: pre-wrap; }\n"
            "</style></head><body style=\" font-family:\'SimSun\'; font-size:9pt; font-weight:400; font-style:normal;\">\n"
            "<p align=\"center\" style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-size:18pt; font-weight:600;\">演示系统</span></p></body></html>"))

    def init_slots(self):
        self.pushButton.clicked.connect(self.button_image_open)
        self.pushButton_3.clicked.connect(self.button_video_open)
        self.pushButton_2.clicked.connect(self.button_camera_open)
        self.timer_video.timeout.connect(self.show_video_frame)

    def init_logo(self):
        pix = QtGui.QPixmap('wechat.jpg')
        self.label.setScaledContents(True)
        self.label.setPixmap(pix)

    def button_image_open(self):
        print('button_image_open')
        name_list = []

        img_name, _ = QtWidgets.QFileDialog.getOpenFileName(
            self, "打开图片", "", "*.jpg;;*.png;;All Files(*)")
        if not img_name:
            return

        img = cv2.imread(img_name)
        print(img_name)
        showimg = img
        with torch.no_grad():
            img = letterbox(img, new_shape=self.opt.img_size)[0]
            # Convert
            # BGR to RGB, to 3x416x416
            img = img[:, :, ::-1].transpose(2, 0, 1)
            img = np.ascontiguousarray(img)
            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            # Inference
            pred = self.model(img, augment=self.opt.augment)[0]
            # Apply NMS
            pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes,
                                       agnostic=self.opt.agnostic_nms)
            print(pred)
            # Process detections
            for i, det in enumerate(pred):
                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(
                        img.shape[2:], det[:, :4], showimg.shape).round()

                    for *xyxy, conf, cls in reversed(det):
                        label = '%s %.2f' % (self.names[int(cls)], conf)
                        name_list.append(self.names[int(cls)])
                        plot_one_box(xyxy, showimg, label=label,
                                     color=self.colors[int(cls)], line_thickness=2)

        cv2.imwrite('prediction.jpg', showimg)
        self.result = cv2.cvtColor(showimg, cv2.COLOR_BGR2BGRA)
        self.result = cv2.resize(
            self.result, (640, 480), interpolation=cv2.INTER_AREA)
        self.QtImg = QtGui.QImage(
            self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB32)
        self.label.setPixmap(QtGui.QPixmap.fromImage(self.QtImg))

    def button_video_open(self):
        video_name, _ = QtWidgets.QFileDialog.getOpenFileName(
            self, "打开视频", "", "*.mp4;;*.avi;;All Files(*)")

        if not video_name:
            return

        flag = self.cap.open(video_name)
        if flag == False:
            QtWidgets.QMessageBox.warning(
                self, u"Warning", u"打开视频失败", buttons=QtWidgets.QMessageBox.Ok, defaultButton=QtWidgets.QMessageBox.Ok)
        else:
            self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(
                *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4))))
            self.timer_video.start(30)
            self.pushButton_3.setDisabled(True)
            self.pushButton.setDisabled(True)
            self.pushButton_2.setDisabled(True)

    def button_camera_open(self):
        if not self.timer_video.isActive():
            # 默认使用第一个本地camera
            flag = self.cap.open(0)
            if flag == False:
                QtWidgets.QMessageBox.warning(
                    self, u"Warning", u"打开摄像头失败", buttons=QtWidgets.QMessageBox.Ok,
                    defaultButton=QtWidgets.QMessageBox.Ok)
            else:
                self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(
                    *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4))))
                self.timer_video.start(30)
                self.pushButton_3.setDisabled(True)
                self.pushButton.setDisabled(True)
                self.pushButton_2.setText(u"关闭摄像头")
        else:
            self.timer_video.stop()
            self.cap.release()
            self.out.release()
            self.label.clear()
            self.init_logo()
            self.pushButton_3.setDisabled(False)
            self.pushButton.setDisabled(False)
            self.pushButton_2.setText(u"摄像头检测")

    def show_video_frame(self):
        name_list = []

        flag, img = self.cap.read()
        if img is not None:
            showimg = img
            with torch.no_grad():
                img = letterbox(img, new_shape=self.opt.img_size)[0]
                # Convert
                # BGR to RGB, to 3x416x416
                img = img[:, :, ::-1].transpose(2, 0, 1)
                img = np.ascontiguousarray(img)
                img = torch.from_numpy(img).to(self.device)
                img = img.half() if self.half else img.float()  # uint8 to fp16/32
                img /= 255.0  # 0 - 255 to 0.0 - 1.0
                if img.ndimension() == 3:
                    img = img.unsqueeze(0)
                # Inference
                pred = self.model(img, augment=self.opt.augment)[0]

                # Apply NMS
                pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes,
                                           agnostic=self.opt.agnostic_nms)
                # Process detections
                for i, det in enumerate(pred):  # detections per image
                    if det is not None and len(det):
                        # Rescale boxes from img_size to im0 size
                        det[:, :4] = scale_coords(
                            img.shape[2:], det[:, :4], showimg.shape).round()
                        # Write results
                        for *xyxy, conf, cls in reversed(det):
                            label = '%s %.2f' % (self.names[int(cls)], conf)
                            name_list.append(self.names[int(cls)])
                            print(label)
                            plot_one_box(
                                xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2)

            self.out.write(showimg)
            show = cv2.resize(showimg, (640, 480))
            self.result = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
            showImage = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0],
                                     QtGui.QImage.Format_RGB888)
            self.label.setPixmap(QtGui.QPixmap.fromImage(showImage))

        else:
            self.timer_video.stop()
            self.cap.release()
            self.out.release()
            self.label.clear()
            self.pushButton_3.setDisabled(False)
            self.pushButton.setDisabled(False)
            self.pushButton_2.setDisabled(False)
            self.init_logo()


if __name__ == '__main__':
    app = QtWidgets.QApplication(sys.argv)
    ui = Ui_MainWindow()
    ui.show()
    sys.exit(app.exec_())

yolov5 pyqt,qt,python,深度学习,pytorch

5.添加背景图片

将demo中最后一段代码改为如下,其中background-image为背景图片地址。

if __name__ == '__main__':
    stylesheet = """
            Ui_MainWindow {
                background-image: url("4K.jpg");
                background-repeat: no-repeat;
                background-position: center;
            }
        """
    app = QtWidgets.QApplication(sys.argv)
    app.setStyleSheet(stylesheet)
    ui = Ui_MainWindow()
    ui.show()
    sys.exit(app.exec_())

yolov5 pyqt,qt,python,深度学习,pytorch

 

6.reference

http://t.csdn.cn/ZVtSKhttp://t.csdn.cn/ZVtSKPyQt5系列教程(三)利用QtDesigner设计UI界面 - 迷途小书童的Note迷途小书童的Note (xugaoxiang.com)https://xugaoxiang.com/2019/12/04/pyqt5-3-qtdesigner/ 文章来源地址https://www.toymoban.com/news/detail-852325.html

到了这里,关于Yolov5(v5.0) + pyqt5界面设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用PYQT5设计登录界面并实现界面跳转

    目录   1 UI登录界面的布局 2 UI登录界面布局对应的代码 3 登录界面和界面跳转完整代码 4 跳转界面代码函数和优化界面代码 5 最终效果        其中, 欢迎使用 XXXX 软件管理员密码 使用的是左边功能的 label 类、 登录 使用的是左边功能的 Push Button 类、 管理员和密码的输入

    2024年02月02日
    浏览(52)
  • 实习记录(5)——PyQT5界面设计及交互

    首先按照甲方PPT上给的界面做了,在写内部逻辑的时候发现有不少问题,没考虑到使用者的感受,甚至我觉得根本用不了。于是我和小哥讨论了一下之后,我按照我的想法做了一个新的页面出来,能实现需求的同时,让使用的人体验更好也更直观。 昨天安装成功了PyQT5,今天

    2023年04月24日
    浏览(39)
  • PyQt5下界面设计, 无边框加阴影界面, 鼠标左键移动事件

            本人小白, 网罗各个网页与资源学习总结的内容, 设置界面无边框且留有阴影, 且鼠标左键可以拖动界面的方法.         首先我们寻找一个模板进行学习演示, 例如腾讯会议的界面:         本人会仿照这个界面进行演示说明, 包括各种样式(你看到就是赚到)      

    2023年04月09日
    浏览(43)
  • PyQt5桌面应用开发(21):界面设计结果自动测试(二)

    PyQt5桌面应用开发(1):需求分析 PyQt5桌面应用开发(2):事件循环 PyQt5桌面应用开发(3):并行设计 PyQt5桌面应用开发(4):界面设计 PyQt5桌面应用开发(5):对话框 PyQt5桌面应用开发(6):文件对话框 PyQt5桌面应用开发(7):文本编辑+语法高亮与行号 PyQt5桌面应用开

    2024年02月09日
    浏览(44)
  • YOLOV5 + PYQT5单目测距(四)

    系统:win 10 YOLO版本:yolov5 5.0 拍摄视频设备:安卓手机 电脑显卡:NVIDIA 2080Ti(CPU也可以跑,GPU只是起到加速推理效果) 详见文章 YOLOV5 + 单目测距(python) 首先安装一下pyqt5 接着再pycharm设置里配置一下 添加下面两个工具: 工具1:Qt Designer 工具2:PyUIC 实验采用的是一个博主

    2024年02月08日
    浏览(45)
  • PyQt5 | 手把手教你YOLOv5添加PyQt页面

    演示视频:YOLOv5/v7添加 PyQT5 页面 我的毕业有救了 !哔哩哔哩

    2024年02月01日
    浏览(54)
  • 人脸识别系统OpenCV+dlib+python(含数据库)Pyqt5界面设计 项目源码 毕业设计

    Python语言、dlib、OpenCV、Pyqt5界面设计、sqlite3数据库      本系统使用dlib作为人脸识别工具,dlib提供一个方法可将人脸图片数据映射到128维度的空间向量,如果两张图片来源于同一个人,那么两个图片所映射的空间向量距离就很近,否则就会很远。因此,可以通过提取图片并

    2024年02月05日
    浏览(68)
  • Pycharm中成功配置PyQt5(External Tools),设计好界面直接生成python代码

    在Pycharm中设置好Python环境,点击File-Settings-Project-Python Interpreter  设置好后退出,点击窗口下的Terminal,输入  同样的方法安装PyQt5-tools: 点击File-Settings-Tools-External Tools,点击+号    需要配置三个tools ,分别是 QtDesigner、PyUICS、Pyrcc,其中QtDesigner是qt 设计师,PyUics是把UI界面转

    2024年02月11日
    浏览(63)
  • 基于yolov5的pyqt5目标检测图形上位机工具【附工程代码】

    【后附工程代码】这是一个集成yolov5算法的目标检测的上位机软件,主要涉及的界面: B站视频演示 1. 用户登入 2.用户注册 3. 忘记密码(暂未开发) 特别说明:这里的用户登入有俩种方式,主要是使用mysql数据库。 若需要使用自己的数据库,记得将以下的信息改未自己的对

    2024年02月03日
    浏览(48)
  • 使用PyQt简单实现YOLOv5交互界面

    可在过往博客查看,YOLO原理,以及具体训练过程 , 这篇文章是继续完善YOLO模型的使用,即将控制台cmd交互的YOLO5模型实现为交互界面可视化操作。我们前期已经搭建了一个QT框架,现在只要将具体函数与QT框架进行绑定即可。 个人建议直接将整个ui文件放置在YOLO5文件夹下,

    2024年02月08日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包