pytorch 查看 GPU 型号

这篇具有很好参考价值的文章主要介绍了pytorch 查看 GPU 型号。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    print("CUDA is available!")
    # 还可以获取CUDA设备的数量
    device_count = torch.cuda.device_count()
    print(f"Number of CUDA devices: {device_count}")
    
    # 获取第一块GPU的信息
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    print(f"Device name: {torch.cuda.get_device_name(device)}")
    
    # 或者进一步获取GPU的详细能力信息
    capability = torch.cuda.get_device_capability(device)
    print(f"Device capability: {capability}")
else:
    print("CUDA is not available.")

返回文章来源地址https://www.toymoban.com/news/detail-852417.html

CUDA is available!
Number of CUDA devices: 4
Device name: NVIDIA GeForce RTX 2080 Ti
Device capability: (7, 5)

到了这里,关于pytorch 查看 GPU 型号的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • AI写作革命:PyTorch如何助力人工智能走向深度创新

    AI写作革命:PyTorch如何助力人工智能走向深度创新

    身为专注于人工智能研究的学者,我十分热衷于分析\\\"AI写稿\\\"与\\\"PyTorch\\\"这两项领先技术。面对日益精进的人工智能科技,\\\"AI写作\\\"已不再是天方夜谭;而\\\"PyTorch\\\"如璀璨明珠般耀眼,作为深度学习领域的尖端工具,正有力地推进着人工智能化进程。于此篇文章中,我将详细解析\\\"

    2024年04月13日
    浏览(9)
  • 人工智能之配置环境教程二:在Anaconda中创建虚拟环境安装GPU版本的Pytorch及torchvision并在VsCode中使用虚拟环境

    人工智能之配置环境教程二:在Anaconda中创建虚拟环境安装GPU版本的Pytorch及torchvision并在VsCode中使用虚拟环境

    孟莉苹,女,西安工程大学电子信息学院,2021级硕士研究生,张宏伟人工智能课题组。 研究方向:机器视觉与人工智能。 电子邮件:2425613875@qq.com 本教程提供需要安装的CUDA11.3、Pytorch1.10.0、torchvision0.11.0的安装包,在下述百度网盘链接中自取! 链接:https://pan.baidu.com/s/18m

    2024年02月02日
    浏览(14)
  • 人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    亮点:网络结构特别深 (突变点是因为学习率除0.1?) 梯度消失 :假设每一层的误差梯度是一个小于1的数,则在反向传播过程中,每向前传播一层,都要乘以一个小于1的误差梯度。当网络越来越深的时候,相乘的这些小于1的系数越多,就越趋近于0,这样梯度就会越来越小

    2023年04月11日
    浏览(314)
  • Windows下PyTorch深度学习环境配置(GPU)

    Windows下PyTorch深度学习环境配置(GPU)

    (路径最好全英文) (下载好后,可以创建其他虚拟环境,因为是自己学习,所以先不放步骤,有需要者可以参考B站up我是土堆的视频) 1.确定显卡型号 (如图右上角,我是1050ti) 确定显卡算力 6.1 (更多CUDA和GPU间的算力关系可参考https://zhuanlan.zhihu.com/p/544337083?utm_id=0) 确

    2024年02月16日
    浏览(22)
  • 完整教程:深度学习环境配置(GPU条件&pytorch)

    完整教程:深度学习环境配置(GPU条件&pytorch)

    如果是python小白,强烈推荐B站小土堆的视频,讲得很清晰(但需要花些时间),地址如下: 最详细的 Windows 下 PyTorch 入门深度学习环境安装与配置 CPU GPU 版 如果有些基础,跟着往下看就行。 配置 作用 Anaconda 灵活切换python运行环境、高效使用python包 GPU 软硬件:硬件基础(

    2024年02月15日
    浏览(11)
  • 深度学习环境配置pytorch-GPU版本

    深度学习环境配置pytorch-GPU版本

    一、下载与安装Anaconda 官网:Free Download | Anaconda 安装时添加环境变量勾选上,这样可以减少一步操作,不用再去自己手动添加了。 二、在anaconda里面创建虚拟环境 创建虚拟环境,其中pytorch为虚拟环境名,3.8.8对应python版本号: 激活进入虚拟环境,其中pytorch为虚拟环境名:

    2024年02月14日
    浏览(13)
  • pytorch的深度学习环境安装配置(GPU版)

    pytorch的深度学习环境安装配置(GPU版)

    目录 一些概念理解  0.anaconda配置国内镜像源  1.anaconda建立一个新的虚拟环境  2. 更新显卡驱动CUDA Driver  3. 安装pytorch 3.1 法(一):利用pip安装Pytorch 3.1.1 法(一)在线pip安装  3.1.2 法(二)本地pip安装 3.2 法(一):利用conda安装Pytorch 3.3 验证pytorch是否安装成功  4. Pychar

    2023年04月15日
    浏览(12)
  • 【深度学习工具】Python代码查看GPU资源使用情况

    【深度学习工具】Python代码查看GPU资源使用情况

    在训练神经网络模型时候,有时候我们想查看GPU资源的使用情况,如果使用Ctrl+Shift+Esc不太符合我们程序员的风格😅,如果可以使用代码查看GPU使用情况就比较Nice  话不多说,直接上代码 实现效果

    2024年02月14日
    浏览(8)
  • 人工智能之深度学习

    第一章 人工智能概述 1.1人工智能的概念和历史 1.2人工智能的发展趋势和挑战 1.3人工智能的伦理和社会问题 第二章 数学基础 1.1线性代数 1.2概率与统计 1.3微积分 第三章 监督学习 1.1无监督学习 1.2半监督学习 1.3增强学习 第四章 深度学习 1.1神经网络的基本原理 1.2深度学习的

    2024年02月09日
    浏览(12)
  • 人工智能深度学习

    人工智能深度学习

    目录 人工智能 深度学习 机器学习 神经网络 机器学习的范围 模式识别 数据挖掘 统计学习 计算机视觉 语音识别 自然语言处理 机器学习的方法 回归算法 神经网络 SVM(支持向量机) 聚类算法 降维算法 推荐算法 其他 机器学习的分类 机器学习模型的评估 机器学习的应用 机

    2024年02月22日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包