MIT线性代数-方程组的几何解释

这篇具有很好参考价值的文章主要介绍了MIT线性代数-方程组的几何解释。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


假设有一个方程组 A X = B AX=B AX=B表示如下
2 x − y = 0 (1) 2x-y=0\tag{1} 2xy=0(1)
− x + 2 y = 3 (2) -x+2y=3\tag{2} x+2y=3(2)
  • 矩阵表示如下:
    [ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] (3) \begin{bmatrix}2&-1\\\\-1&2\end{bmatrix}\begin{bmatrix}x\\\\y\end{bmatrix}=\begin{bmatrix}0\\\\3\end{bmatrix}\tag{3} 2112 xy = 03 (3)

1. 二维空间

1.1 行方向

  • 从行的方向上可以得到如下图形:
    MIT线性代数-方程组的几何解释,线性代数,机器学习,人工智能
  • 得到的交点M(1,2) 就是矩阵求得的x=1,y=2答案。

1.2 列方向

将方程变换成列方向,可得如下结构:
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\begin{bmatrix}2\\\\-1\end{bmatrix}+y\begin{bmatrix}-1\\\\2\end{bmatrix}=\begin{bmatrix}0\\\\3\end{bmatrix} x 21 +y 12 = 03

  • 可以看成两个向量a= [ 2 − 1 ] \begin{bmatrix}2\\\\-1\end{bmatrix} 21 ,b= [ − 1 2 ] \begin{bmatrix}-1\\\\2\end{bmatrix} 12 的线性组合。
    MIT线性代数-方程组的几何解释,线性代数,机器学习,人工智能
  • 从列方向可以看出来,方程组可以看出来是以a= [ 2 − 1 ] \begin{bmatrix}2\\\\-1\end{bmatrix} 21 ,b= [ − 1 2 ] \begin{bmatrix}-1\\\\2\end{bmatrix} 12 为基,以 x, y 为系数,进行向量计算求得向量 [ 0 3 ] \begin{bmatrix}0\\\\3\end{bmatrix} 03

2. 三维空间

2.1 行方向

2 x − y = 0 ; − x + 2 y − z = − 1 ; − 3 y + 4 z = 4 2x-y=0;\quad-x+2y-z=-1;\quad-3y+4z=4 2xy=0;x+2yz=1;3y+4z=4
三维图像如下:
MIT线性代数-方程组的几何解释,线性代数,机器学习,人工智能文章来源地址https://www.toymoban.com/news/detail-852468.html

  • 我们发现,对于方程组来说,我们从行方向画图的时候发现,特别难找到三个平面的交点,为此我们希望用更简单的方式看方程组(列方向)

2.2 列方向

  • 方程组: 2 x − y = 0 ; − x + 2 y − z = − 1 ; − 3 y + 4 z = 4 2x-y=0;\quad-x+2y-z=-1;\quad-3y+4z=4 2xy=0;x+2yz=1;3y+4z=4
  • 转换成矩阵:
    x [ 2 − 1 0 ] + y [ − 1 2 − 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] x\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix}+y\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix}+z\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix}=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} x 210 +y 123 +z 014 = 014
  • 从列方向的角度来看,我们是以 a = [ 2 − 1 0 ] , b = [ − 1 2 − 3 ] , c = [ 0 − 1 4 ] a=\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix},b=\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix},c=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} a= 210 ,b= 123 ,c= 014 为基,以x,y,z为系数画图,求得向量 z = [ 0 − 1 4 ] z=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} z= 014
  • 那么我们就可以以更简单的方式进行求解系数x,y,z
    MIT线性代数-方程组的几何解释,线性代数,机器学习,人工智能
  • 通过矩阵方程和图形可以看出,当x=0,y=0,z=1时可以得到结果
    0 [ 2 − 1 0 ] + 0 [ − 1 2 − 3 ] + 1 [ 0 − 1 4 ] = [ 0 − 1 4 ] 0\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix}+0\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix}+1\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix}=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} 0 210 +0 123 +1 014 = 014
  • 只有当向量a,b,c 相互独立,那么就可以通过系数x,y,z来求得向量z;
  • AX=b 表示的是将A的列向量进行组合得到向量b.

到了这里,关于MIT线性代数-方程组的几何解释的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数之线性方程组

    目录 文章目录 一、具体型方程组  1. 解线性方程组     1.1 齐次线性方程组          1.1.1 解向量及其性质          1.1.2基础解系         1.1.3齐次线性方程组有非零解的充要条件及通解  1.2 非齐次线性方程组            1.2.1克拉默法则         1.2.2几个相关说法的等

    2024年02月20日
    浏览(49)
  • 线性代数基础【4】线性方程组

    定理1 设A为mXn矩阵,则 (1)齐次线性方程组AX=0 只有零解的充分必要条件是r(A)=n; (2)齐次线性方程组AX=0 有非零解(或有无数个解)的充分必要条件是r(A)<n 推论1 设A为n阶矩阵,则 (1)齐次线性方程组AX=0只有零解的充分必要条件是|A|≠0; (2)齐次线性方程组AX=0有非零解(或有无数个解)的

    2024年02月01日
    浏览(55)
  • 【考研数学】线性代数第四章 —— 线性方程组(2,线性方程组的通解 | 理论延伸)

    承接前文,继续学习线性方程组的内容,从方程组的通解开始。 (1)基础解系 —— 设 r ( A ) = r n r(A)=rn r ( A ) = r n ,则 A X = 0 pmb{AX=0} A X = 0 所有解构成的解向量组的极大线性无关组称为方程组 A X = 0 pmb{AX=0} A X = 0 的一个基础解系。基础解系中所含有的线性无关的解向量的个

    2024年02月11日
    浏览(42)
  • 【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?

    如果你进行的矩阵乘法涉及一个线性方程组 Ax = b,并且你乘以一个可逆矩阵 M,且产生新的方程组 M(Ax) = Mb,那么这两个系统是等价的;它们具有相同的解集。这是因为可逆矩阵的乘法可以视为一个可逆的线性变换,不会改变方程解的存在性或唯一性。 换句话说,如果你将原

    2024年02月03日
    浏览(47)
  • 线性代数:齐次线性方程组学习笔记

    齐次线性方程组是指所有方程的常数项均为零的线性方程组,即形如 A x = 0 Ax=0 A x = 0 的方程组。 其中,矩阵 A A A 是一个 m × n m times n m × n 的矩阵,向量 x x x 是一个 n n n 维列向量, 0 mathbf{0} 0 是一个 m m m 维零向量。 齐次线性方程组有以下性质: 1. 性质1 齐次线性方程组的

    2024年01月20日
    浏览(38)
  • 线性代数(第四章)线性方程组

    4.1 线性方程组 ● 由二元一次方程的消元法,交换两个方程,用非零数乘以某个方程,某方程乘以k倍加到另一方程。这个与矩阵的初等行变换相似。 ● 将上面方程组的未知数去掉,将系数写在一个矩阵中。就可以表示该方程组。并可以通过矩阵的初等行变换求解。 4.2 线性

    2024年04月26日
    浏览(31)
  • 线性代数 第四章 线性方程组

    一、矩阵形式 经过初等行变换化为阶梯形矩阵。当,有解;当,有非零解。 有解,等价于 可由线性表示 克拉默法则:非齐次线性方程组中,系数行列式,则方程组有唯一解,且唯一解为 其中是中第i列元素(即的系数)替换成方程组右端的常数项所构成的行列式。 二、向量

    2024年02月07日
    浏览(43)
  • 线性代数(三) 线性方程组&向量空间

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(31)
  • 线性代数思维导图--线性代数中的线性方程组(1)

    1.解线性方程组 2.线性方程组解的情况 3.线性方程组的两个基本问题 1.阶梯型矩阵性质 2.简化阶梯型矩阵(具有唯一性) 3.行化简算法 4.线性方程组的解 1.R^2中的向量 2.R^2中的几何表示 3.R^n中的向量 4.线性组合与向量方程 5.span{v},span{u,v}的几何解释 1.定义 2.定理 3.解的存在性

    2024年02月02日
    浏览(76)
  • 机器学习-线性代数-4-解方程组

    对于如下方程组: a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = b m a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b1\\\\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b2\\\\....\\\\a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = bm a 11 ​ x 1 ​ + a 12 ​ x 2 ​ + ... +

    2024年02月12日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包