1、代码
import tensorflow as tf
# 1、数据导入/构建数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 2、数据预处理/数据归一化
x_train, x_test = x_train / 255.0, x_test / 255.0
# 3、构建模型
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 4-5、模型训练及验证
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()
2、结果展示
文章来源地址https://www.toymoban.com/news/detail-852586.html
文章来源:https://www.toymoban.com/news/detail-852586.html
到了这里,关于【tensorflow框架神经网络实现MNIST分类_Keras】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!