【论文阅读】ELA: Efficient Local Attention for Deep Convolutional Neural Networks

这篇具有很好参考价值的文章主要介绍了【论文阅读】ELA: Efficient Local Attention for Deep Convolutional Neural Networks。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

(ELA)Efficient Local Attention for Deep Convolutional Neural Networks

论文链接:ELA: Efficient Local Attention for Deep Convolutional Neural Networks (arxiv.org)

作者:Wei Xu, Yi Wan

单位:兰州大学信息科学与工程学院,青海省物联网重点实验室,青海师范大学

引用:Xu W, Wan Y. ELA: Efficient Local Attention for Deep Convolutional Neural Networks[J]. arXiv preprint arXiv:2403.01123, 2024.

摘要

efficient local attention,论文,论文阅读,深度学习,人工智能,算法,卷积神经网络

众所周知,图像的空间维度包含关键的位置信息,而现有的注意力机制要么无法有效利用这种空间信息,要么以降低通道维数为代价。为了解决这些局限性,本文提出了一种高效局部注意力(Efficient Local Attention,ELA)方法,通过分析Coordinate Attention(CA) method的局限性,确定了Batch Normalization中泛化能力的缺乏、降维对通道注意力的不利影响以及注意力生成过程的复杂性。为了克服这些挑战,提出了结合一维卷积和Group Normalization特征增强技术。这种方法通过有效地编码两个一维位置特征图,无需降维即可精确定位感兴趣区域,同时允许轻量级实现。与2D卷积相比,1D卷积更适合处理序列信号,并且更轻量、更快。GN与BN相比,展现出可比较的性能和更好的泛化能力。
efficient local attention,论文,论文阅读,深度学习,人工智能,算法,卷积神经网络

与 CA 类似,ELA 采用strip pooling在空间维度上获取水平和垂直方向的特征向量,保持窄核形状以捕获长程依赖关系,防止不相关区域影响标签预测,从而在各自方向上产生丰富的目标位置特征。ELA 针对每个方向独立处理上述特征向量以获得注意力预测,然后使用点乘操作将其组合在一起,从而确保感兴趣区域的准确位置信息。

Method

Coordinate Attention

CA包括两个主要步骤:坐标信息嵌入和坐标注意力生成。在第一步中,通过使用strip pooling而不是spatial global pooling来捕捉长距离的空间依赖性。

考虑一个卷积块的输出为 R H × W × C R ^{H \times W \times C} RH×W×C ,分别H,W,C代表高度、宽度和通道维度(即卷积核的数量)。第一步中,为了应用strip pooling,分别在两个空间范围内对每个通道执行平均池化: ( H , 1 ) (H,1) (H,1) 在水平方向上和 ( 1 , W ) (1,W) (1,W) 在垂直方向上,数学表示如下:

z c h ( h ) = 1 H ∑ 0 ≤ i < H x c ( h , i ) z _ { c } ^ { h } ( h ) = \frac { 1 } { H } \sum _ { 0 \leq i < H } x _ { c } ( h , i ) zch(h)=H10i<Hxc(h,i)

z c w ( w ) = 1 W ∑ 0 ≤ j < W x c ( j , w ) z _ { c } ^ { w } \left( w \right) = \frac { 1 } { W } \sum _ { 0 \leq j < W } x _ { c } ( j , w ) zcw(w)=W10j<Wxc(j,w)

第二步中,由上述两个方程生成的特征图被聚合成为新的特征图,然后被送入共享转换函数 F 1 F_1 F1(一个2D卷积)以及批量归一化(BN),可以表示如下。

f = δ ( B N ( F 1 ( [ z h , z w ] ) ) ) f = \delta ( B N ( F _ { 1 } ( \left[ z ^ { h } , z ^ { w } \right] ) ) ) f=δ(BN(F1([zh,zw])))

其中,级联操作 [ . , . ] [.,.] [.,.] 沿空间维, δ \delta δ 表示非线性激活函数。中间特征图 R C / r × ( H + W ) R^{C / r \times ( H + W )} RC/r×(H+W),是水平和垂直编码后得到的。随后, f h ∈ R C / r × H f ^ { h } \in R ^ { C / r \times H } fhRC/r×H f h ∈ R C / r × H , f w ∈ R C / r × W f ^ { h } \in R ^ { C / r \times H } , f ^ { w } \in R ^ { C / r \times W } fhRC/r×H,fwRC/r×W,沿着空间维度。此外,另外两个 1 × 1 1×1 1×1卷积变换 F h F_h Fh F w F_w Fw用于生成与输入通道数相同的张量。

g c h = σ ( F h ( f h ) ) g _ { c } ^ { h } = \sigma ( F _ { h } ( f ^ { h } ) ) gch=σ(Fh(fh))

g c w = σ ( F w ( f w ) ) g _ { c } ^ { w } = \sigma ( F _ { w } ( f ^ { w } ) ) gcw=σ(Fw(fw))

其中, δ \delta δ 表示sigmoid函数。为了降低计算开销,通常适当的减少 f f f的通道数,比如32。最后得到输出 g c h g _ { c } ^ { h } gch g c w g _ { c } ^ { w } gcw ,被扩展并用作注意力权重,分别对应于水平和垂直方向。最终,CA 模块的输出可以表示为 Y Y Y

y c ( i , j ) = x c ( i , j ) × g c h ( i ) × g c w ( j ) y _ { c } ( i , j ) = x _ { c } ( i , j ) \times g _ { c } ^ { h } ( i ) \times g _ { c } ^ { w } ( j ) yc(i,j)=xc(i,j)×gch(i)×gcw(j)

通道维度的降低旨在减少模型的复杂性,但会影响通道与它们对应权重之间的关联,这可能会对整体的注意力预测产生不利影响。

Shortcomings of Coordinate Attention

efficient local attention,论文,论文阅读,深度学习,人工智能,算法,卷积神经网络

BN极大地依赖于小批量的大小,当小批量过小时,BN计算出的均值和方差可能无法充分代表整个数据集,这可能会损害模型的总体性能。最开始CA中获得的坐标信息嵌入表示了每个通道维度内的序列信息,将BN放置在处理序列数据的网络中并不是最佳选择,特别是对于CA。

因此,CA可能会对较小的网络架构产生负面影响。相反,当GN被用作CA中BN的替代品,并融入到较小的网络架构中时,性能立即出现显著提升。此外,对CA结构的深入分析可以揭示额外的挑战。在第二步的开始,两个方向的特征图和被拼接成一个新的特征图,随后进行编码。然而,两个方向的特征图和具有独特的特性。因此,一旦合并并捕捉到它们的特点,它们各自连接处的相互影响可能会削弱每个方向上注意力预测的准确性

Efficient Local Attention

CA方法通过利用strip pooling来捕获空间维度中的长距离依赖,显著提高了准确度,尤其是在更深层的网络中。基于之前的分析,可以看出BN阻碍了CA的泛化能力,而GN(组归一化)则解决了这些不足

因为第一步中得出的位置信息嵌入是通道内的序列信号。因此,通常更合适的是使用1D卷积而不是2D卷积来处理这些序列信号。1D卷积不仅擅长处理序列信号,而且与2D卷积相比,它更加轻量化。在CA的情况下,尽管两次使用了2D卷积,但它使用的是 1 × 1 1×1 1×1 的卷积核,这限制了特征提取能力。因此,ELA采用5或7大小的1D卷积核,这有效地增强了位置信息嵌入的交互能力,使得整个ELA能够准确找到感兴趣的区域

z h z_h zh z w z_w zw 不仅捕捉了全局感知场,还捕捉了精确的位置信息。为了有效地利用这些特征,作者设计了一些简单的处理方法。对两个方向(水平和垂直)上的位置信息应用一维卷积以增强其信息。随后,使用组归一化 G n G_n Gn 来处理增强的位置信息,可以得到在水平和垂直方向上的位置注意力的表示:

y h = σ ( G n ( F h ( z h ) ) ) y w = σ ( G n ( F w ( z w ) ) ) \begin{matrix} y ^ { h } = \sigma ( G _ { n } ( F _ { h } ( z _ { h } ) ) ) \\ y ^ { w } = \sigma ( G _ { n } ( F _ { w } ( z _ { w } ) ) ) \end{matrix} yh=σ(Gn(Fh(zh)))yw=σ(Gn(Fw(zw)))

其中, σ \sigma σ 为非线性激活函数, F h F _ { h } Fh F w F _ { w } Fw 表示一维卷积,卷积核设置为5或7。尽管参数数量略有增加,但大小为 7 7 7 的卷积核表现更好。

Multiple ELA version settings

为了在考虑参数数量的同时优化ELA的性能,引入了四种方案:ELA-Tiny(ELA-T),ELA-Base(ELA-B),ELA-Small(ELA-S)和ELA-Large(ELA-L)。

  1. ELA-T的参数配置为 kernel size = 5, groups = in channels, num group = 32;
  2. ELA-B的参数配置为 kernel size = 7, groups = in channels, num group = 16;
  3. ELA-S的参数配置为 kernel size = 5, groups = in channels/8, num group = 16;
  4. ELA-L的参数配置为 kernel size = 7, groups = in channels/8, num group = 16;

Visualization

为了评估ELA方法的有效性,作者在ImageNet上进行了两组实验:ResNet(不包含注意力模块)和ELA-ResNet(包含ELA)。为了评估性能,作者使用了五张图像进行测试。通过使用GradCAM生成视觉 Heatmap ,作者在第四层(最后一个阶段的最后瓶颈)展示了两组模型的成果。下图说明了作者提出的ELA模块成功指导整个网络更精确地聚焦于目标细节的相关区域。这一演示突显了ELA模块在提高分类准确度方面的有效性。

efficient local attention,论文,论文阅读,深度学习,人工智能,算法,卷积神经网络

Implementation

efficient local attention,论文,论文阅读,深度学习,人工智能,算法,卷积神经网络

实验

efficient local attention,论文,论文阅读,深度学习,人工智能,算法,卷积神经网络文章来源地址https://www.toymoban.com/news/detail-852622.html

到了这里,关于【论文阅读】ELA: Efficient Local Attention for Deep Convolutional Neural Networks的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读:RFAConv: Innovating Spatial Attention andStandard Convolutional Operatio|RFAConv:创新空间注意力和标准卷积操作

      摘要 一、简介 3研究方法 3.1标准卷积操作回顾 3.2空间注意力回顾 3.3 空间注意与标准卷积运算 3.4创新空间注意力和标准卷积操作 入数据 总结 空间注意力被广泛用于提高卷积神经网络的性能。但是,它也有一定的局 限性。 本文提出了空间注意有效性的新视角,即空间注意

    2024年02月04日
    浏览(30)
  • 【论文阅读】DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks

    相较于传统的视觉里程计,端到端的方法可以认为是把特征提取、匹配、位姿估计等模块用深度学习模型进行了替代。不同于那种用深度学习模型取代里程计框架一部分的算法,端到端的视觉里程计是直接将整个任务替换为深度学习,输入依然是图像流,结果也依然是位姿,

    2024年03月18日
    浏览(38)
  • 深度学习论文: Rethinking Mobile Block for Efficient Attention-based Models及其PyTorch实现

    深度学习论文: Rethinking Mobile Block for Efficient Attention-based Models及其PyTorch实现 Rethinking Mobile Block for Efficient Attention-based Models PDF: https://arxiv.org/pdf/2301.01146.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks EMO是高效、轻量级的模型

    2024年02月09日
    浏览(27)
  • 论文阅读《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》

    就上一篇博客如何写论文、读(分享汇报)论文,在《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》进行实践。 《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》是一篇由Mingxing Tan和Quoc V. Le等人于2019年提出的论文,主要关注卷积神经网络(CNN)的模型缩

    2024年02月03日
    浏览(30)
  • 论文阅读:TinySAM: Pushing the Envelope for Efficient Segment Anything Model-文章内容阅读

    论文标题: TinySAM: 极致高效的分割一切模型 论文地址:https://arxiv.org/pdf/2312.13789.pdf 代码地址(pytorch):https://github.com/xinghaochen/TinySAM 详细论文解读:TinySAM:极致高效压缩,手机就能实时跑的分割一切模型 - 知乎 (zhihu.com)  目录 文章内容解析  概括 文章的观点 技术创新解

    2024年01月17日
    浏览(35)
  • Deep Frequency Filtering for Domain Generalization论文阅读笔记

    这是CVPR2023的一篇论文,讲的是在频域做domain generalization,找到频域中generalizable的分量enhance它,suppress那些影响generalization的分量 DG是一个研究模型泛化性的领域,尝试通过各自方法使得模型在未见过的测试集上有良好的泛化性。 intro部分指出,低频分量更好泛化,而高频分

    2024年02月07日
    浏览(26)
  • 论文阅读 | Restormer: Efficient Transformer for High-Resolution Image Restoration

    前言:CVPR2022oral 用transformer应用到low-level任务 low-level task 如deblurringdenoisingdehazing等任务多是基于CNN做的,这样的局限性有二: 第一是卷积操作的感受野受限,很难建立起全局依赖, 第二就是卷积操作的卷积核初始化是固定的,而attention的设计可以通过像素之间的关系自适

    2024年02月05日
    浏览(32)
  • 【论文阅读笔记】Prompt Tuning for Parameter-efficient Medical Image Segmentation

    Fischer M, Bartler A, Yang B. Prompt tuning for parameter-efficient medical image segmentation[J]. Medical Image Analysis, 2024, 91: 103024. 【开源】 【核心思想】 本文的核心思想是提出了一种用于医学图像分割的参数高效的提示调整(Prompt Tuning)方法。这种方法基于预训练的神经网络,通过插入可学习的

    2024年01月17日
    浏览(39)
  • [论文阅读笔记23]Adaptive Sparse Convolutional Networks with Global Context Enhancement for ... on drone

    最近正在痛苦改论文中…还没投出去, 心情糟糕 所以不如再做一点笔记… 论文题目: Adaptive Sparse Convolutional Networks with Global Context Enhancement for Faster Object Detection on Drone Images 论文地址: 论文 代码地址: 代码 这是一篇CVPR2023的文章, 是无人机数据集的小目标检测. 文章针对小尺寸目

    2024年02月04日
    浏览(33)
  • 材料论文阅读/中文记录:Scaling deep learning for materials discovery

    Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023: 1-6. 全文速览 这篇文章主要讲了一种名为 GNoME 的 材料发现框架 。该框架利用机器学习和高通量计算方法,通过预测材料的稳定性和性质,加速新材料的发现。文章介绍了GNoME的 工作原理和方

    2024年02月02日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包