018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL)

这篇具有很好参考价值的文章主要介绍了018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、 模块介绍

1.1 简介

1.2 协议

二、 驱动代码

三、 应用代码

四、 实验

五、 程序优化


一、 模块介绍

1.1 简介

        红外遥控被广泛应用于家用电器、工业控制和智能仪器系统中,像我们熟知的有电视机盒子遥控器、空调遥控器。红外遥控器系统分为发送端和接收端,如图下图所示。

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

        发送端就是红外遥控器,上面有许多按键,当我们按下遥控器按键时,遥控器内部电路会进行编码和调制,再通过红外发射头,将信号以肉眼不可见的红外线发射出去。红外线线虽然肉眼不可见,但可以通过手机摄像头看到,常用该方法检查遥控器是否正常工作。接收端是一个红外接收头,收到红外信号后,内部电路会进行信号放大和解调,再将数据传给板子上的 GPIO,板子收到数据后再解码才能确定是哪个按键被按下。

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

1.2 协议

        我们按下遥控器按键的时候,遥控器自动发送某个红外信号,接收头接收到红外信号,然后把红外信号转换成电平信号,通过 IRD 这根线,传给 SOC。整个传输,只涉及单向传输,由 HS0038 向主芯片传送。因此,我们只需要编写程序,从 IRD 上获取数据即可,在这之前,我们需要先了解下数据是怎么表示的,也就是传输的红外数据的格式。
        红外协议有: NEC、 SONY、 RC5、 RC6 等,常用的就是 NEC 格式,因此我们主要对 NEC 进行讲解。在分析文章中的波形之前,我们先想象一下怎么在一条数据线上传输信号。开始传输数据之前,一般都会发出一个 start 起始信号,通知对方我开始传输数据了,后面就是每一位每一位的数据。NEC 协议的开始是一段引导码

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

        这个引导码由一个 9ms 的低脉冲加上一个 4.5ms 的高脉冲组成,它用来通知接收方我要开始传输数据了。

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

        然后接着的是数据,数据由 4 字节组成:地址、地址(取反)、数据、数据(取反),取反是用来校验用的。地址是指遥控器的 ID,每一类遥控器的 ID 都不一样,这样就可以防止操控电视的遥控器影响空调。数据就是遥控器上的不同按键值。从前面的图可以知道, NEC 每次要发 32 位(地址、地址取反、数据、数据取反,每个 8 位)的数据。数据的 1 和 0,开始都是 0.56ms 的低脉冲,对于数据 1,后面的高脉冲比较长,对于数据 0,后面的高脉冲比较短。

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

        第一次按下按键时,它会发出引导码,地址,地址取反,数据,数据取反。
        如果这时还没松开按键,这就是“长按”,怎么表示“长按”?遥控器会发送一个不一样的引导码,这个引导码由 9ms 的低脉冲, 2.25ms 的高脉冲组成,表示现在按的还是上次一样的按键,也叫连发码,它会一直发送,直到松开

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

二、 驱动代码

#include "asm-generic/errno-base.h"
#include "linux/jiffies.h"
#include <linux/module.h>
#include <linux/poll.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>

struct gpio_desc{
	int gpio;
	int irq;
    char *name;
    int key;
	struct timer_list key_timer;
} ;

static struct gpio_desc gpios[] = {
    {115, 0, "irda", },
};

/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_class;

/* 环形缓冲区 */
#define BUF_LEN 128
static unsigned char g_keys[BUF_LEN];
static int r, w;

struct fasync_struct *button_fasync;

static u64 g_irda_irq_times[68];
static int g_irda_irq_cnt = 0;

#define NEXT_POS(x) ((x+1) % BUF_LEN)

static int is_key_buf_empty(void)
{
	return (r == w);
}

static int is_key_buf_full(void)
{
	return (r == NEXT_POS(w));
}

static void put_key(unsigned char key)
{
	if (!is_key_buf_full())
	{
		g_keys[w] = key;
		w = NEXT_POS(w);
	}
}

static unsigned char get_key(void)
{
	unsigned char key = 0;
	if (!is_key_buf_empty())
	{
		key = g_keys[r];
		r = NEXT_POS(r);
	}
	return key;
}


static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);

// static void key_timer_expire(struct timer_list *t)
static void key_timer_expire(unsigned long data)
{
	/* 超时 */
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);
}


/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t irda_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	unsigned char kern_buf[2] ;
	int err;

	if (size != 2)
		return -EINVAL;

	if (is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
		return -EAGAIN;
	
	wait_event_interruptible(gpio_wait, !is_key_buf_empty());
	kern_buf[0] = get_key();  /* device */
	kern_buf[1] = get_key();  /* data   */

	if (kern_buf[0] == (unsigned char)-1  && kern_buf[1] == (unsigned char)-1)
		return -EIO;

	err = copy_to_user(buf, kern_buf, 2);
	
	return 2;
}


static unsigned int irda_poll(struct file *fp, poll_table * wait)
{
	//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	poll_wait(fp, &gpio_wait, wait);
	return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}

static int irda_fasync(int fd, struct file *file, int on)
{
	if (fasync_helper(fd, file, on, &button_fasync) >= 0)
		return 0;
	else
		return -EIO;
}


/* 定义自己的file_operations结构体                                              */
static struct file_operations gpio_key_drv = {
	.owner	 = THIS_MODULE,
	.read    = irda_read,
	.poll    = irda_poll,
	.fasync  = irda_fasync,
};

static void parse_irda_datas(void)
{
	u64 time;
	int i;
	int m, n;
	unsigned char datas[4];
	unsigned char data = 0;
	int bits = 0;
	int byte = 0;

	/* 1. 判断前导码 : 9ms的低脉冲, 4.5ms高脉冲  */
	time = g_irda_irq_times[1] - g_irda_irq_times[0];
	if (time < 8000000 || time > 10000000)
	{
		goto err;
	}

	time = g_irda_irq_times[2] - g_irda_irq_times[1];
	if (time < 3500000 || time > 55000000)
	{
		goto err;
	}

	/* 2. 解析数据 */
	for (i = 0; i < 32; i++)
	{
		m = 3 + i*2;
		n = m+1;
		time = g_irda_irq_times[n] - g_irda_irq_times[m];
		data <<= 1;
		bits++;
		if (time > 1000000)
		{
			/* 得到了数据1 */
			data |= 1;
		}

		if (bits == 8)
		{
			datas[byte] = data;
			byte++;
			data = 0;
			bits = 0;
		}
	}

	/* 判断数据正误 */
	datas[1] = ~datas[1];
	datas[3] = ~datas[3];
	
	if ((datas[0] != datas[1]) || (datas[2] != datas[3]))
	{
		printk("data verify err: %02x %02x %02x %02x\n", datas[0], datas[1], datas[2], datas[3]);
		goto err;
	}

	put_key(datas[0]);
	put_key(datas[2]);
	wake_up_interruptible(&gpio_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);
	return;

err:
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);
}

static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{
	struct gpio_desc *gpio_desc = dev_id;
	u64 time;
	
	/* 1. 记录中断发生的时刻 */	
	time = ktime_get_ns();
	g_irda_irq_times[g_irda_irq_cnt] = time;

	/* 2. 累计中断次数 */
	g_irda_irq_cnt++;

	/* 3. 次数达标后, 删除定时器, 解析数据, 放入buffer, 唤醒APP */
	if (g_irda_irq_cnt == 68)
	{
		parse_irda_datas();
		del_timer(&gpio_desc->key_timer);
		g_irda_irq_cnt = 0;
	}

	/* 4. 启动定时器 */
	mod_timer(&gpio_desc->key_timer, jiffies + msecs_to_jiffies(100));
	return IRQ_HANDLED;
}


/* 在入口函数 */
static int __init irda_init(void)
{
    int err;
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	
	for (i = 0; i < count; i++)
	{		
		gpios[i].irq  = gpio_to_irq(gpios[i].gpio);

		setup_timer(&gpios[i].key_timer, key_timer_expire, (unsigned long)&gpios[i]);
	 	//timer_setup(&gpios[i].key_timer, key_timer_expire, 0);
		err = request_irq(gpios[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, gpios[i].name, &gpios[i]);
	}

	/* 注册file_operations 	*/
	major = register_chrdev(0, "100ask_irda", &gpio_key_drv);  /* /dev/gpio_desc */

	gpio_class = class_create(THIS_MODULE, "100ask_irda_class");
	if (IS_ERR(gpio_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "100ask_gpio_key");
		return PTR_ERR(gpio_class);
	}

	device_create(gpio_class, NULL, MKDEV(major, 0), NULL, "irda"); /* /dev/irda */
	
	return err;
}

/* 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数
 */
static void __exit irda_exit(void)
{
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

	device_destroy(gpio_class, MKDEV(major, 0));
	class_destroy(gpio_class);
	unregister_chrdev(major, "100ask_irda");

	for (i = 0; i < count; i++)
	{
		free_irq(gpios[i].irq, &gpios[i]);
		del_timer(&gpios[i].key_timer);
	}
}


/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(irda_init);
module_exit(irda_exit);

MODULE_LICENSE("GPL");


三、 应用代码


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>

static int fd;

/*
 * ./button_test /dev/irda
 *
 */
int main(int argc, char **argv)
{
	unsigned char buf[2];
	
	/* 1. 判断参数 */
	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}


	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	while (1)
	{
		if (read(fd, buf, 2) == 2)
			printf("get irda: deivce 0x%02x, data 0x%02x\n", buf[0], buf[1]);
		else
			printf("get irda: -1\n");
	}

	close(fd);
	
	return 0;
}


四、 实验

        因为ip默认是dhcp分配的所以,我ifconfig后dhcp会给我覆盖掉烦死啦,所以配置一下永久生效的好了

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 192.168.5.110
netmask 255.255.255.0
gareway 192.168.5.1

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

不是所有的按键都好使不知道为什么

五、 程序优化

#include "asm-generic/errno-base.h"
#include "linux/jiffies.h"
#include <linux/module.h>
#include <linux/poll.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>

struct gpio_desc{
	int gpio;
	int irq;
    char *name;
    int key;
	struct timer_list key_timer;
} ;

static struct gpio_desc gpios[] = {
    {115, 0, "irda", },
};

/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_class;

/* 环形缓冲区 */
#define BUF_LEN 128
static unsigned char g_keys[BUF_LEN];
static int r, w;

struct fasync_struct *button_fasync;

static u64 g_irda_irq_times[68];
static int g_irda_irq_cnt = 0;

#define NEXT_POS(x) ((x+1) % BUF_LEN)

static int is_key_buf_empty(void)
{
	return (r == w);
}

static int is_key_buf_full(void)
{
	return (r == NEXT_POS(w));
}

static void put_key(unsigned char key)
{
	if (!is_key_buf_full())
	{
		g_keys[w] = key;
		w = NEXT_POS(w);
	}
}

static unsigned char get_key(void)
{
	unsigned char key = 0;
	if (!is_key_buf_empty())
	{
		key = g_keys[r];
		r = NEXT_POS(r);
	}
	return key;
}


static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);

// static void key_timer_expire(struct timer_list *t)
static void key_timer_expire(unsigned long data)
{
	/* 超时 */
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);
}


/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t irda_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	unsigned char kern_buf[2] ;
	int err;

	if (size != 2)
		return -EINVAL;

	if (is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
		return -EAGAIN;
	
	wait_event_interruptible(gpio_wait, !is_key_buf_empty());
	kern_buf[0] = get_key();  /* device */
	kern_buf[1] = get_key();  /* data   */

	if (kern_buf[0] == (unsigned char)-1  && kern_buf[1] == (unsigned char)-1)
		return -EIO;

	err = copy_to_user(buf, kern_buf, 2);
	
	return 2;
}


static unsigned int irda_poll(struct file *fp, poll_table * wait)
{
	//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	poll_wait(fp, &gpio_wait, wait);
	return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}

static int irda_fasync(int fd, struct file *file, int on)
{
	if (fasync_helper(fd, file, on, &button_fasync) >= 0)
		return 0;
	else
		return -EIO;
}


/* 定义自己的file_operations结构体                                              */
static struct file_operations gpio_key_drv = {
	.owner	 = THIS_MODULE,
	.read    = irda_read,
	.poll    = irda_poll,
	.fasync  = irda_fasync,
};

static void parse_irda_datas(void)
{
	u64 time;
	int i;
	int m, n;
	unsigned char datas[4];
	unsigned char data = 0;
	int bits = 0;
	int byte = 0;

	/* 1. 判断前导码 : 9ms的低脉冲, 4.5ms高脉冲  */
	time = g_irda_irq_times[1] - g_irda_irq_times[0];
	if (time < 8000000 || time > 10000000)
	{
		goto err;
	}

	time = g_irda_irq_times[2] - g_irda_irq_times[1];
	if (time < 3500000 || time > 55000000)
	{
		goto err;
	}

	/* 2. 解析数据 */
	for (i = 0; i < 32; i++)
	{
		m = 3 + i*2;
		n = m+1;
		time = g_irda_irq_times[n] - g_irda_irq_times[m];
		data <<= 1;
		bits++;
		if (time > 1000000)
		{
			/* 得到了数据1 */
			data |= 1;
		}

		if (bits == 8)
		{
			datas[byte] = data;
			byte++;
			data = 0;
			bits = 0;
		}
	}

	/* 判断数据正误 */
	datas[1] = ~datas[1];
	datas[3] = ~datas[3];
	
	if ((datas[0] != datas[1]) || (datas[2] != datas[3]))
	{
		printk("data verify err: %02x %02x %02x %02x\n", datas[0], datas[1], datas[2], datas[3]);
		goto err;
	}

	put_key(datas[0]);
	put_key(datas[2]);
	wake_up_interruptible(&gpio_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);
	return;

err:
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);
}

static int get_irda_repeat_datas(void)
{
	u64 time;

	/* 1. 判断重复码 : 9ms的低脉冲, 2.25ms高脉冲  */
	time = g_irda_irq_times[1] - g_irda_irq_times[0];
	if (time < 8000000 || time > 10000000)
	{
		return -1;
	}

	time = g_irda_irq_times[2] - g_irda_irq_times[1];
	if (time < 2000000 || time > 2500000)
	{
		return -1;
	}	

	return 0;
}

static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{
	struct gpio_desc *gpio_desc = dev_id;
	u64 time;
	
	/* 1. 记录中断发生的时刻 */	
	time = ktime_get_ns();
	g_irda_irq_times[g_irda_irq_cnt] = time;

	/* 2. 累计中断次数 */
	g_irda_irq_cnt++;

	/* 3. 次数达标后, 删除定时器, 解析数据, 放入buffer, 唤醒APP */
	if (g_irda_irq_cnt == 4)
	{
		/* 是否重复码 */
		if (0 == get_irda_repeat_datas())
		{
			/* device: 0, val: 0, 表示重复码 */
			put_key(0);
			put_key(0);
			wake_up_interruptible(&gpio_wait);
			kill_fasync(&button_fasync, SIGIO, POLL_IN);
			del_timer(&gpio_desc->key_timer);
			g_irda_irq_cnt = 0;
			return IRQ_HANDLED;
		}
	}
	if (g_irda_irq_cnt == 68)
	{
		parse_irda_datas();
		del_timer(&gpio_desc->key_timer);
		g_irda_irq_cnt = 0;
		return IRQ_HANDLED;
	}

	/* 4. 启动定时器 */
	mod_timer(&gpio_desc->key_timer, jiffies + msecs_to_jiffies(100));
	return IRQ_HANDLED;
}


/* 在入口函数 */
static int __init irda_init(void)
{
    int err;
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	
	for (i = 0; i < count; i++)
	{		
		gpios[i].irq  = gpio_to_irq(gpios[i].gpio);

		setup_timer(&gpios[i].key_timer, key_timer_expire, (unsigned long)&gpios[i]);
	 	//timer_setup(&gpios[i].key_timer, key_timer_expire, 0);
		err = request_irq(gpios[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, gpios[i].name, &gpios[i]);
	}

	/* 注册file_operations 	*/
	major = register_chrdev(0, "100ask_irda", &gpio_key_drv);  /* /dev/gpio_desc */

	gpio_class = class_create(THIS_MODULE, "100ask_irda_class");
	if (IS_ERR(gpio_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "100ask_gpio_key");
		return PTR_ERR(gpio_class);
	}

	device_create(gpio_class, NULL, MKDEV(major, 0), NULL, "irda"); /* /dev/irda */
	
	return err;
}

/* 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数
 */
static void __exit irda_exit(void)
{
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

	device_destroy(gpio_class, MKDEV(major, 0));
	class_destroy(gpio_class);
	unregister_chrdev(major, "100ask_irda");

	for (i = 0; i < count; i++)
	{
		free_irq(gpios[i].irq, &gpios[i]);
		del_timer(&gpios[i].key_timer);
	}
}


/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(irda_init);
module_exit(irda_exit);

MODULE_LICENSE("GPL");


018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL),# 基于鸿蒙的芯片评估板自检系统,驱动开发,嵌入式,操作系统,linux,IRDA

这次没有那个-1了,按下和弹起时都会有数据被拿到文章来源地址https://www.toymoban.com/news/detail-852868.html

到了这里,关于018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于51单片机设计的红外遥控器

    遥控器是现代生活中必不可少的电子产品之一,目前市面上的遥控器种类繁多,应用范围广泛。而 NEC 红外遥控器协议则是目前应用最为广泛的一种协议之一,几乎所有的电视、空调等家用电器都支持该协议。 本项目是基于 51 单片机设计支持 NEC 协议的红外遥控器,实现接收

    2024年02月09日
    浏览(46)
  • 104、基于51单片机智能风扇pwm调速红外遥控无线遥控风扇温控风扇系统设计

    毕设帮助、开题指导、技术解答(有偿)见文末。 目录 摘要 一、硬件方案 二、设计功能 三、实物图 四、原理图 五、Protues仿真 六、流程图 七、程序源码 八、资料包括 随着气温的逐渐上升,风扇的需求量也逐渐扩大。传统风扇不能根据外界温度的变化对风扇转速快慢进行

    2024年02月15日
    浏览(72)
  • T2-U开发板实现红外遥控接收与发送

    红外遥控是利用近红外光进行数据传输的一种控制方式,广泛应用在工业控制、家电、照明等多个领域,很多产品在加入了智能控制功能后,依然还会保留红外控制方式。 这次我们就是使用Tuya T2-U开发板开发智能产品的基础上,加入红外接收、发送功能。不仅可以通过APP、语

    2024年02月08日
    浏览(45)
  • 48、基于51单片机红外遥控智能温控风扇系统设计

        本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统STC89C52单片机作为控制平台对风扇转速进行控制。可由用户设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温

    2024年02月04日
    浏览(50)
  • 基于MSP430 红外避障-遥控小车(电赛必备 附项目代码)

    项目环境: 1. MSP430F5529 2. Code Composer Studio 3. 蓝牙调试助手 项目简介: 小车可分为3种工作模式,每种工作模式都会打印在OLED显示屏上,通过按键转换工作模式。 模式1: 小车红外循迹,通过超声波实时监测障碍物距离,若超出规定路线,距离障碍物相对较近时,原地停止,

    2023年04月08日
    浏览(43)
  • 63、基于51单片机红外遥控人体感应自动门控制系统设计

    毕设帮助、开题指导、技术解答(有偿)见文末。 目录 摘要 一、硬件方案 二、设计功能 三、实物图 四、原理图 五、PCB图 六、Protues仿真 七、程序 部分代码 八、资料包括 伴随着电气技术的发展,电气控制控制技术已经成熟,针对电子自动门进行研究。基于8051内核的单片

    2024年02月03日
    浏览(47)
  • 基于FPGA的蓝牙遥控,超声波避障,红外循迹的智能小车

            闲来无事整个小车玩玩,设想的小车可以有蓝牙模块来控制模式切换,通过发送指令来更改相对应的功能,当避障的时候可以自动规避障碍物,当处于红外循迹时,可以跟随规划的轨迹前线,当手动遥控时可以控制前进后退左右转向停止等功能。         先介绍一下

    2024年02月07日
    浏览(50)
  • I.MX6ULL ARM驱动开发---网络设备驱动框架

      网络驱动是 linux 里面驱动三巨头之一,linux 下的网络功能非常强大,嵌入式 linux 中也常常用到网络功能。前面我们已经讲过了字符设备驱动和块设备驱动,本章我们就来学习一下 linux 里面的网络设备驱动。   网络设备驱动程序的体系结构分为4层,依次为网络协议驱

    2023年04月17日
    浏览(38)
  • linux驱动开发 ST7789 LCD驱动移植(I.MX6ULL平台)

    前言 I.MX6ULL的板子未选配RGB的屏幕,无法在板子上进行GUI的开发调试,不过手头上有块控制器为ST7789V3的LCD屏幕(1.3inch),通过简易接线后可以很方便进行驱动的移植 如有异议,欢迎留言指正 ST7789 LCD控制器 ST7789是一款单芯片TFT-LCD控制器,支持并口与SPI通信方式 特性 控制器支

    2023年04月09日
    浏览(84)
  • 基于STM32单片机的智能家居窗户窗帘控制系统红外遥控proteus仿真原理图PCB

    功能: 0.本系统采用STM32F103RCT6作为单片机 1.LCD1602液晶实时显示当前时间/窗帘状态/光照强度 2.支持手动按键/定时/光强检测三种模式控制窗帘 3.\\\'设置’键进入设置界面 4.默认状态下’确定’键可切换模式 5.设置界面’确定’为确定 6.支持掉电保存 7.采用DC002作为电源接口可直

    2024年02月11日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包