算法系列--动态规划--背包问题(1)--01背包介绍

这篇具有很好参考价值的文章主要介绍了算法系列--动态规划--背包问题(1)--01背包介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💕"趁着年轻,做一些比较cool的事情"💕
作者:Lvzi
文章主要内容:算法系列–动态规划–背包问题(1)–01背包介绍
动态规划算法解决01背包问题,算法,动态规划

大家好,今天为大家带来的是算法系列--动态规划--背包问题(1)--01背包介绍

一.什么是背包问题

背包问题是动态规划中经典的一类问题,经常在笔试面试中出现,是非常具有区分度的题目

背包问题的种类很多,变式多,也就使得背包问题的难度一般都很高,而01背包问题属于其中最基础,可以当做思考模版的题目,下面就来讲解–01背包问题

前情提示:如果你没有动态规划的基础,还是尽量不要通过背包问题入门,先去做上几十到动态规划的题目再来学习背包问题

二.01背包问题

链接:
01背包问题

动态规划算法解决01背包问题,算法,动态规划

分析:

首先要明确这道题目一共有两问,第一问求的是在不超过背包限制的前提下,可以得到的最大价值
,第二问求的是在刚好装满背包的情况下,可以得到的最大价值

第一问:求这个背包至多能装多大价值的物品?

我们先来模拟一下背包问题的执行过程,其实就是从所有物品中选择合适的物品填入背包,来实现价值的最大化,在选物品时我们是可以任意选择的,这不就类似于在任意的子序列中,选出最大xxxx的问题么?

好了,相信大家也能分析到这里,说:这不就是一个简单的子序列问题么,这有啥难得,于是兴致勃勃的写下状态表示

  • dp[i]:表示在[1,i]之间的所有物品中,可以实现的最大价值物品的价值

(注:下标我们从1开始是因为这是dp问题常用的一种初始化dp表的方式)

但是我们在填i位置的值时,需要考虑此时背包容量对我们装填的影响(比如如果背包的容量很小,只有1,而我们i物品的体积是99,肯定无法装进去)

所以我们还需要一个状态来表示背包体积,也就是每走到一个物品都要保证符合容量大小,于是状态表示如下:

  • dp[i][j]:在[1,i]之间的所有物品中,体积不超过j,可以实现的最大价值物品的价值

我们可以验证一下这个状态表示能否返回最终的结果呢?可以,dp[n][V]就表示在所给定的n个物品中,体积不超过背包的最大体积V,选择可以实现最大价值的物品的价值

接下来就来推到状态转移方程:

状态转移方程一般就是根据最后一个位置的状态去讨论,在本题中,分类讨论的依据就是包不包括最后一个物品
动态规划算法解决01背包问题,算法,动态规划

注意:选nums[i]这种情况不是一定能实现的,需要满足此时的背包体积大于第i个物品的体积,也就是需要满足j - v[i] >= 0

返回值:dp[n][V]
以上就是第一问的详细分析过程

第二问:若背包恰好装满,求至多能装多大价值的物品?

相较于第一问多了体积的限制,必须要满足体积的前提下实现价值的最大化,但是大致的思路和第一问很像,只需要在第一问的基础上做出一些改变即可:

  • dp[i][j]:表示在[0,i]区间内的物品,在体积为j的前提下,可以实现的最大价值

状态转移方程

动态规划算法解决01背包问题,算法,动态规划
这里多了个限制条件dp[i - 1][j - v[i]] != -1,还是根据题目要求得来的,要考虑一种特殊情况,也就是在[0,i]区间内的物品根本无法组合成体积为j的情况(这也是会存在的),要想i位置存在价值,必须保证i-1位置刚好能够实现j-v[i]的体积

初始化相较于第一问也有所不同,具体来说需要把dp表的第一行初始化为-1(除了dp[0][0]),第一行代表不选择任何物品,也就无法构成满足j体积这个条件,我们将其设置为-1

之所以设置为-1是为了和dp[0][0] = 0这种情况作区分

代码:

import java.util.Scanner;

// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    static int N = 1010;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和背包体积

        // 处理第一问
        int[] v = new int[N],w = new int[N];// 存储物品的体积和价值
        for(int i = 1; i <= n; i++) {// 输入数值
            v[i] = in.nextInt(); 
            w[i] = in.nextInt();
        }

        int[][] dp = new int[N][N];
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - v[i] >= 0) 
                    dp[i][j] = Math.max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);
            }
        }

        System.out.println(dp[n][V]);

        // 处理第二问
        dp = new int[N][N];
        for(int j = 1; j <= V; j++) {// 初始化
            dp[0][j] = -1;
        }

        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - v[i] >= 0 && dp[i - 1][j - v[i]] != -1)
                    dp[i][j] = Math.max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[n][V] == -1 ? 0 : dp[n][V]);
    }
}

上述解法的空间复杂度是很高的,我们开辟的dp表是一个N*N的,下面介绍使用滚动数组实现空间优化

动态规划算法解决01背包问题,算法,动态规划

空间优化之后的代码:

import java.util.Scanner;

// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    static int N = 1010;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和背包体积

        // 处理第一问
        int[] v = new int[N],w = new int[N];// 存储物品的体积和价值
        for(int i = 1; i <= n; i++) {// 输入数值
            v[i] = in.nextInt(); 
            w[i] = in.nextInt();
        }

        int[] dp = new int[N];
        for(int i = 1; i <= n; i++) 
            for(int j = V; j >= v[i]; j--) 
                dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
            
        System.out.println(dp[V]);

        // 处理第二问
        dp = new int[N];
        for(int j = 1; j <= V; j++) 
            dp[j] = -1;// 初始化

        for(int i = 1; i <= n; i++) 
            for(int j = V; j >= v[i]; j--) 
                if(j - v[i] >= 0 && dp[j - v[i]] != -1)
                    dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
              
        System.out.println(dp[V] == -1 ? 0 : dp[V]);
    }
}

总结:本文的核心要点

  1. 什么是背包问题
  2. 01背包问题详解
  3. 背包问题的空间优化(滚动数组)

以上就是算法系列--动态规划--背包问题(1)--01背包介绍全部内容,下一篇文章将会带来01背包问题的拓展题目,敬请期待,我是LvZi文章来源地址https://www.toymoban.com/news/detail-853300.html

到了这里,关于算法系列--动态规划--背包问题(1)--01背包介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法分析与设计——动态规划求解01背包问题

    假设有四个物品,如下图,背包总容量为8,求背包装入哪些物品时累计的价值最多。 我们使用动态规划来解决这个问题,首先使用一个表格来模拟整个算法的过程。 表格中的信息表示 指定情况下能产生的最大价值 。例如, (4, 8)表示在背包容量为8的情况下,前四个物品的最

    2024年02月04日
    浏览(70)
  • 算法套路十四——动态规划之背包问题:01背包、完全背包及各种变形

    如果对递归、记忆化搜索及动态规划的概念与关系不太理解,可以前往阅读算法套路十三——动态规划DP入门 背包DP介绍:https://oi-wiki.org/dp/knapsack/ 0-1背包:有n个物品,第i个物品的体积为w[i],价值为v[i],每个物品至多选一个, 求体积和不超过capacity时的最大价值和,其中i从

    2024年02月10日
    浏览(60)
  • C++算法初级11——01背包问题(动态规划2)

    辰辰采药 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时

    2024年02月02日
    浏览(50)
  • 动态规划——使用python解决01背包问题

    目录 什么是01背包问题? 题目: 输入格式: 输出格式: 代码实现: 代码执行示例: 代码解析:         01背包问题是一个经典的组合优化问题,通常用于描述如下情境:假设有一个背包,它能够承受一定的重量上限(即背包容量),同时有一组物品,每件物品有自己的重

    2024年02月03日
    浏览(58)
  • 【算法日志】动态规划刷题:01背包问题,多重背包问题(day37,day38)

    目录 前言 目标和(01背包) 一和零(01背包) 零钱兑换(多重背包) 排列总和(多重背包) 这两天都是背包问题,其中的01背包的一些应用问题需要一定的数学建模能力,需要i将实际问题简化成我们熟悉的背包问题;而这两天的多重背包问题还算比较基础,但也要我明白了

    2024年02月11日
    浏览(56)
  • 【算法|动态规划 | 01背包问题No.2】AcWing 423. 采药

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【AcWing算法提高学习专栏】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成

    2024年02月06日
    浏览(50)
  • 01背包问题三种解决(贪心动态规划分支限界)

    一、实验目的 1、深入理解背包相关问题。 2、能正确设计相应的算法,解决实际问题。   3、掌握算法时间复杂度分析。 二、实验要求 用3种方法求解0-1背包问题(贪心算法、 动态规划、分支限界法 ),获得精确最优解或近似最优解均可。 通过一个规模较大的实例比较不同

    2024年02月02日
    浏览(57)
  • 算法设计与分析实验二:动态规划法求解TSP问题和01背包问题

    【实验内容】 (1)tsp问题:利用动态规划算法编程求解TSP问题,并进行时间复杂性分析。 输入:n个城市,权值,任选一个城市出发; 输出:以表格形式输出结果,并给出向量解和最短路径长度。 (2)01背包问题:利用动态规划算法编程求解0-1背包问题,并进行时间复杂性分

    2024年02月03日
    浏览(58)
  • 力扣算法刷题Day42|动态规划:01背包问题 分割等和子集

    力扣题目:01背包问题(二维数组) 刷题时长:参考题解 解题方法:动态规划 + 二维dp数组 复杂度分析 时间 空间 问题总结 理解递推公式困难 本题收获 动规思路:两层for循环,第一层i遍历物品,第二层j枚举背包容量以内所有值 确定dp数组及下标的含义:dp[i][j] 表示从下标

    2024年02月13日
    浏览(62)
  • 贪心算法解决背包问题和动态规划解决0-1背包问题(c语言)

    运行结果如下: 运行结果如下: 总结: 贪心算法: 每一步都做出当时看起来最佳的选择,也就是说,它总是做出局部最优的选择。 贪心算法的设计步骤: 对其作出一个选择后,只剩下一个子问题需要求解。 证明做出贪心选择后,原问题总是存在最优解,即贪心选择总是安

    2024年02月04日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包