使用Python和OpenCV批量可视化labelme分割标注结果

这篇具有很好参考价值的文章主要介绍了使用Python和OpenCV批量可视化labelme分割标注结果。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【原创声明】
本文为博主原创文章,未经博主允许不得转载。
更多算法总结请关注我的博客:https://blog.csdn.net/suiyingy。

        在计算机视觉领域中,图像分割是一项重要的任务,它可以将图像中的不同物体或区域进行像素级别的分割。而在图像分割任务中,人工标注数据是非常关键的一环。本文将介绍如何使用Python和OpenCV库对labelme分割标注结果进行批量可视化处理。

1. 准备工作

        在开始之前,我们需要安装以下依赖库:
        - OpenCV:用于图像处理和可视化。
        - numpy:用于数组操作和颜色映射。
        - glob:用于文件路径匹配。
        - tqdm:用于显示进度条。
        - pathlib:用于处理文件路径。

2. 单张图片分割标注可视化

        首先,我们需要定义几个辅助函数。其中,`cv_imread()`函数用于读取图片文件,支持中文路径;`single_sample_process()`函数用于处理单张图片的分割标注结果,并可选择保存独立mask或图像与mask混合显示。

3. 批量图片分割标注可视化

        接下来,我们可以定义`batch_samples_process()`函数,用于批量处理标注文件夹中的所有图片。该函数会遍历每个标注文件,调用`single_sample_process()`函数进行处理,并将结果保存到指定目录。

4. 类别与颜色映射

        在程序中,我们使用`classes`列表定义了类别名称,然后通过`colmaps`字典将每个类别与对应的颜色进行映射。你可以选择不同的方法来生成颜色映射,比如随机颜色、相同颜色或指定颜色。

5. 示例和运行

        最后,我们提供了一个示例,展示如何使用上述函数处理labelme分割标注结果。你需要设置好标注文件夹的路径、保存结果的文件夹路径、图片格式以及要处理的类别列表。

# -*- coding: utf-8 -*-
'''
labelme分割标注结果批量可视化显示与保存。
更多算法总结请关注博客:https://blog.csdn.net/suiyingy。
'''

import os
import cv2
import json
import numpy as np
from glob import glob
from tqdm import tqdm
from pathlib import Path


# 读取图片,支持中文路径
# file_path:图片文件路径
# 输出默认为BGR格式彩色图像矩阵
def cv_imread(file_path, flags=cv2.IMREAD_COLOR):
    cv_img=cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), flags=flags)
    return cv_img

# 单张图片分割标注可视化
# iamge_path:图片文件路径
# label_path:标注文件路径
# save_path:标注mask保存路径,支持保存独立mask或图像与mask混合显示
# colmaps:字典格式,不同类别对应的mask颜色
# target:列表格式,仅处理target种指定类别,如果列表为空,则处理全部类别
def single_sample_process(image_path, label_path, save_path, colmaps, target=[]):
    image   = cv_imread(image_path)
    h, w, _ = image.shape
    anns    = json.load(open(label_path, "r", encoding="utf-8"))
    mask    = np.zeros((h, w, 3), dtype=np.uint8)
    for shape in anns['shapes']:
        label = shape['label']
        if len(target) > 0 and label not in target: # 筛选指定标签
            continue
        points = np.array(shape['points'], np.int32)
        mask_tmp = np.zeros((h, w), dtype=np.uint8)
        cv2.fillPoly(mask_tmp, [points], 255)
        cv2.fillPoly(mask, [points], colmaps[label])
        image[mask_tmp > 0] = image[mask_tmp > 0] * 0.5  + np.array(colmaps[label]).astype(np.uint8) * 0.5
        cv2.polylines(image, [points], True, (0, 255, 0), 3)
        cx, cy = ((np.min(points, 0)) + (np.max(points, 0))) // 2 - 20
        cv2.putText(image, label, (cx, cy), cv2.FONT_HERSHEY_COMPLEX, 2, (0, 0, 0))
        cv2.imwrite(save_path, mask)
    # 可视化
    # cv2.namedWindow('maskimg', 0)
    # cv2.imshow('maskimg', image)
    # cv2.waitKey(0)
    # cv2.namedWindow('mask', 0)
    # cv2.imshow('mask', mask)
    # cv2.waitKey(0)

# 批量图片分割标注可视化
# root_dir:标注文件的文件夹目录
# colmaps:字典格式,不同类别对应的mask颜色
# save_dir:标注mask的保存文件夹目录,支持保存独立mask或图像与mask混合显示
# img_type:原始图片格式
# target:列表格式,仅处理target种指定类别,如果列表为空,则处理全部类别
def batch_samples_process(root_dir, colomaps, save_dir='res', img_type='png', target=[]):
    root_dir = str(Path(root_dir)) + '/'
    save_dir = str(Path(save_dir)) + '/'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    label_files = glob(root_dir + '*.json')
    for label_path in tqdm(label_files):
        filename = os.path.basename(label_path)
        image_path = label_path.replace('.json', '.' + img_type)
        save_path = save_dir + filename + '.png'
        single_sample_process(image_path, label_path, save_path, colomaps, target)
        # break

if __name__ == '__main__':
    # 类别
    classes = ['aa', 'bb', 'cc']
    # 类别与与MASK对应的颜色,下面三种方法可任意选择一种
    colmaps = dict(zip(classes, np.random.randint(0, 256, (1, 3), dtype=np.uint8).tolist() * len(classes)))#初始化成相同颜色
    colmaps = dict(zip(classes, np.random.randint(0, 256, (len(classes), 3), dtype=np.uint8).tolist()))#初始化成随机颜色
    colmaps = {'aa': [255, 0, 0], 'bb': [0, 255, 0], 'cc': [0, 0, 255]}#初始化成指定颜色
    root_dir = r'D:\aaa'
    save_dir = r'res'
    image_files = os.listdir(root_dir)
    batch_samples_process(root_dir, colmaps, save_dir, 'png', ['aa', 'bb', 'cc'])

        本文介绍了使用Python和OpenCV对labelme分割标注结果进行批量可视化处理的方法。通过定义几个辅助函数和主函数,我们可以方便地读取标注文件夹中的图片和标注数据,并将结果保存为独立的mask文件或图像与mask混合显示。这种可视化处理方法可以帮助我们更直观地理解分割标注结果,并用于进一步的图像分析和深度学习模型训练。

        如果你对该方法感兴趣,可以点击[这里](https://blog.csdn.net/suiyingy)查看更多相关算法总结和实践经验

【原创声明】
本文为博主原创文章,未经博主允许不得转载。
更多算法总结请关注我的博客:https://blog.csdn.net/suiyingy。
文章来源地址https://www.toymoban.com/news/detail-853332.html

到了这里,关于使用Python和OpenCV批量可视化labelme分割标注结果的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【python可视化大屏】使用python实现可拖拽数据可视化大屏

    我在前几期分享了关于爬取weibo评论的爬虫,同时也分享了如何去进行数据可视化的操作。但是之前的可视化都是单独的,没有办法在一个界面上展示的。这样一来呢,大家在看的时候其实是很不方便的,就是没有办法一目了然的看到数据的规律。为了解决这个问题我使用p

    2024年02月03日
    浏览(62)
  • 使用Python进行三维可视化

    使用Python进行三维可视化 Python是一种易于学习和使用的编程语言,它拥有强大的图形处理能力。在科学、工程或数据分析等领域,Python可以用来处理和生成各种图表和图像。本文将介绍如何使用Python进行三维可视化,并提供相应的源代码。 首先,我们需要安装必要的Python库

    2024年02月14日
    浏览(48)
  • 【100天精通Python】Day71:Python可视化_一文掌握Seaborn库的使用《一》_数据分布可视化,数据关系可视化,示例+代码

    目录 1. 数据分布的可视化 1.1 直方图(Histograms) 1.2 核密度估计图(Kernel Density Estimation Plot)

    2024年02月06日
    浏览(53)
  • 如何使用Python进行数据可视化

    数据可视化是一种将数据呈现为图形或图表的技术,它有助于理解和发现数据中的模式和趋势。Python是一种流行的编程语言,有很多库可以帮助我们进行数据可视化。在本文中,我们将介绍使用Python进行数据可视化的基本步骤。 第一步:导入必要的库 在开始之前,我们需要

    2024年02月08日
    浏览(52)
  • python-数据可视化-使用API

    使用Web应用程序编程接口 (API)自动请求网站的特定信息而不是整个网页,再对这些信息进行可视化 Web API是网站的一部分,用于与使用具体URL请求特定信息的程序交互。这种请求称为API调用 。请求的数据将以易于处理的格式(如JSON或CSV)返回。依赖于外部数据源的大多数

    2024年02月11日
    浏览(39)
  • 【100天精通Python】Day72:Python可视化_一文掌握Seaborn库的使用《二》_分类数据可视化,线性模型和参数拟合的可视化,示例+代码

    目录 1. 分类数据的可视化 1.1 类别散点图(Categorical Scatter Plot) 1.2 类别分布图(Categorical Distribution Plot)

    2024年02月08日
    浏览(42)
  • Python 数据可视化:Seaborn 库的使用

    ✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 Seaborn 是一个基于 Python 的数据可视化库,它

    2024年02月07日
    浏览(45)
  • 12.9建模复盘——EXCEL批量处理数据、查找数据、熵权法、可视化

    以下是一些可以查询英国国家数据的网站: 1. 英国政府网站(www.gov.uk):提供各个政府部门的数据和统计信息,包括经济、人口、教育、健康、环境等领域。 2. 英国国家统计局(www.ons.gov.uk):英国的官方统计机构,提供广泛的统计数据和报告,涵盖经济、劳动力、人口、

    2024年02月05日
    浏览(45)
  • Python 数据可视化库之bokeh使用详解

    数据可视化在数据分析和报告中扮演着关键角色,而Python的Bokeh库为创建交互式、具有吸引力的可视化图表提供了强大的工具。本文将介绍Bokeh的基本概念、安装方法以及详细的示例代码,以帮助大家了解如何使用Bokeh创建出色的数据可视化。 Bokeh是一个Python库,用于创建交互

    2024年01月18日
    浏览(41)
  • 如何使用Python进行可视化/音视频处理?

    要使用Python进行可视化和音视频处理,可以使用以下库: matplotlib:用于绘制各种类型的图表和图形,包括折线图、柱状图、散点图等。 seaborn:基于matplotlib的可视化库,提供更高级别的图表和样式,用于创建各种吸引人的统计图表。 plotly:用于创建交互式图表和数据可视化

    2024年02月09日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包