Elastic:加速生成式人工智能体验

这篇具有很好参考价值的文章主要介绍了Elastic:加速生成式人工智能体验。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者:Matt Riley

搜索驱动的人工智能和开发人员工具专为速度和规模而打造。

Elastic:加速生成式人工智能体验,Elasticsearch,AI,Elastic,人工智能,elasticsearch,搜索引擎,大数据,全文检索,数据库

在大型语言模型(LLM)和生成式 AI 的每日突破中,开发者站在了这场运动的最前沿,影响着它的方向和可能性。在这篇博客中,我将分享 Elastic 的搜索客户是如何利用 Elastic 的向量数据库和开放平台,为搜索驱动的 AI 和开发者工具加速和扩展生成式 AI 体验,为他们提供了新的增长途径。

Dimensional Research 进行的最近一次开发者调查并得到 Elastic 支持的结果显示,87% 的开发者已经有了生成式 AI 的用例 —— 无论是数据分析、客户支持、工作场所搜索还是聊天机器人。但只有 11% 已经成功地将这些用例部署到生产环境中。

有几个因素阻碍了他们:

  • 模型部署和管理:选择正确的模型需要实验和快速迭代。为生成式 AI 应用部署 LLM 是耗时且复杂的,对许多组织来说学习曲线陡峭。
  • 法律和合规问题:当处理敏感数据时,这些问题尤其重要,可以成为模型采用的障碍。
  • 扩展性:领域特定数据对于 LLM 理解上下文和生成准确输出至关重要。随着数据的扩展,检索这些数据需要同样可扩展的支持,以应对生成向量嵌入的工作负载,迅速增加对内存和计算资源的需求。在庞大的数据集中,上下文窗口大且代价高昂地传递给 LLM,并且更多的上下文并不一定意味着更高的相关性。只有一个强大的工具平台能够塑造上下文,并平衡相关性与扩展性之间的权衡,以实现一个可行的、面向未来的创新架构。
Elastic:加速生成式人工智能体验,Elasticsearch,AI,Elastic,人工智能,elasticsearch,搜索引擎,大数据,全文检索,数据库
图表:你的组织预计在构建生成式 AI 用例时,将在哪些领域花费最多的时间和资源?

开发者寻求一种可靠、可扩展且成本效益高的方式来构建生成式 AI 应用程序,以及一个简化实施和 LLM 选择过程的平台。

Elastic:加速生成式人工智能体验,Elasticsearch,AI,Elastic,人工智能,elasticsearch,搜索引擎,大数据,全文检索,数据库
图表:选择向量搜索引擎时,贵组织的主要考虑因素是什么?

Elastic 通过快速创新的步伐,持续为这些开发者关注的问题提供解决方案,以支持生成式 AI 的用例。

快速、大规模地推出生成式人工智能体验

Elasticsearch 是市场上下载次数最多的向量数据库,Elastic 与 Lucene 社区的深厚合作使我们能够更快地为客户设计和交付搜索创新。 Elasticsearch 现在由 Lucene 9.10 提供支持,帮助客户通过生成式 AI 实现速度和规模。 在 9.10 中,除其他速度提升外,用户还发现多段索引的查询延迟显着改善。 这仅仅是开始,还会有更快的速度。

我们选择 Elastic 作为向量数据库,因为它具有固有的灵活性、可扩展性和可靠性。Elastic 不断通过快速提供支持机器学习和生成式 AI 的新功能来提升水平。

—— Peter O'Connor,Stack Overflow 平台工程部经理

为了快速实施和扩展 RAG 工作负载,Elastic 学习稀疏编码器(ELSER)—— 现已正式发布 —— 是一款易于部署、优化的、用于语义搜索的晚期交互机器学习(ML)模型。ELSER 提供上下文相关的搜索结果,无需精细调整,并为开发者提供了一个内置的可信解决方案,节省了你在模型选择、部署和管理方面的时间和复杂性。

ELSER 在不牺牲速度的情况下提升了搜索的相关性 —— 当 Consensus 升级了其由 Elastic 提供动力的学术研究平台,使用 ELSER 时,它将搜索延迟减少了75%,同时提高了准确性。

当你将 ELSER 与 E5 嵌入模型配对时,你可以轻松应用多语言向量搜索。我们为 Elasticsearch 部署特别定制的 E5 优化工件。通过上传多语言模型或与 Elastic 的推理 API 集成(例如,Cohere 的多语言模型嵌入)也可以实现多语言搜索。这些进步进一步加速了检索增强生成(RAG),使 Elastic 成为扩展你构建的创新生成式 AI 体验的关键基础设施。

Elastic 也专注于高效地扩展这些体验。我们在 8.12 版本中引入的标量量化是向量存储的游戏规则改变者。大型向量扩展可能会导致搜索速度变慢。但这种压缩技术显著降低了内存需求,达到四倍,并且在更高的规模上,对召回率的影响可以忽略不计。它使得在 RAG 中使用的向量搜索速度翻倍,而不牺牲准确性。结果是什么?一个更精简、更快的系统,在规模上削减了基础设施成本。

搜索对于提升 Udemy 用户体验至关重要 —— 将用户与相关的教育内容匹配,这就是为什么 Elastic 一直是我们的长期合作伙伴。自从去年升级到 Elastic Cloud 以来,我们就一直使用 Elastic 作为我们的向量数据库,它为我们的业务开辟了新的机会。随着我们在创新教育解决方案中扩展向量搜索,我们已经看到了查询速度和资源效率的增加。

Udemy 软件工程团队

对于 RAG 来说,最相关的搜索引擎

相关性是获得最佳生成式 AI 体验的关键。使用 ELSER 进行语义搜索和使用 BM25 进行文本搜索是检索作为 LLM 上下文的相关文档的绝佳首选步骤。大型上下文窗口可以进一步通过现在是 Elastic Stack 的一部分的重新排名工具进行细化。重新排名器应用强大的 ML 模型对搜索结果进行微调,并根据用户偏好和信号将最相关的结果置于顶部。学习排序(LTR)现在也是 Elasticsearch 平台的本机功能。这对于依赖于向 LLM 提供最相关结果作为上下文的 RAG 用例非常有用。

通过 inference API 和像 Cohere 这样的第三方提供商,实施进一步简化。升级到我们的最新版本,以测试重新排名器对相关性的影响。

这些方法不仅可以提高搜索准确性(例如 Consensus 的情况下提高了 30%),而且还可以帮助你快速获得结果,为 RAG 优化相关性并有效管理 ML 工作流。

使模型选择和更换变得简单

模型选择就像在干草堆里寻找针一样感觉艰难。实际上,我们的开发者调查突出显示,跨组织的前五大生成式 AI 努力之一是与 LLM 集成。这个难题不仅仅是为一个用例选择开源还是闭源 LLM —— 它还扩展到准确性、数据安全性、特定领域的特性,以及快速适应不断变化的 LLM 生态系统。开发者需要一个直接的工作流程来尝试新模型并轻松更换它们。

Elastic 通过其开放平台、向量数据库和搜索引擎支持转换器模型和基础模型。Elastic 学习稀疏编码器(ELSER)是加速 RAG 实施的可靠起点。

此外,Elastic 的 inference API 为开发者简化了代码和多云推理管理。无论你是使用 ELSER 还是来自 OpenAI(在开发者中评估和使用最多的模型)、Hugging Face、Cohere 或其他来源的嵌入式模型来处理 RAG 工作负载,一个 API 调用就能确保管理混合推理部署的代码整洁。借助 inference API,可以轻松访问广泛的模型,因此你可以找到合适的选择。与特定领域的自然语言处理(NLP)和生成式 AI 模型的轻松集成简化了模型管理,释放你的时间专注于 AI 创新。

Elastic:加速生成式人工智能体验,Elasticsearch,AI,Elastic,人工智能,elasticsearch,搜索引擎,大数据,全文检索,数据库
图表:你的组织使用过、评估过或计划评估哪些嵌入模型?
Elastic:加速生成式人工智能体验,Elasticsearch,AI,Elastic,人工智能,elasticsearch,搜索引擎,大数据,全文检索,数据库
图表:你的组织目前使用或预计将来会使用哪些类型的模型?

携手同行:与集成共创卓越体验

开发者还可以托管包括公共和私有 Hugging Face 模型在内的多样化转换模型。虽然 Elasticsearch 作为整个生态系统的多功能向量数据库,那些偏好使用诸如 LangChain 和 LlamaIndex 工具的开发者,可以利用我们的集成快速启动基于 LangChain 模板的生产就绪的生成式 AI 应用。Elastic 的开放平台让你能够快速适应、实验并加速生成式 AI 项目。Elastic 最近还被添加为 On Your Data 的第三方向量数据库,这是一个构建对话式 copilots 的新服务。另一个好例子是 Elastic 与 Cohere 团队背后的合作,使 Elastic 成为 Cohere 嵌入式向量的优秀向量数据库。

生成式 AI 正在重塑每一个组织,Elastic 在这里支持这一转型。对开发者而言,成功实施生成式 AI 的关键是持续学习(你已经看过 Elastic Search Labs 了吗?)和快速适应不断变化的 AI 景观。

当你将 Elastic 的准确性和速度与 Google Cloud 的强大功能结合起来时,你可以构建一个非常稳定和成本效益高的搜索平台,同时为用户提供令人愉悦的体验。

—— Sujith Joseph,思科系统的首席企业搜索和云架构师

立即尝试!

  • 在 Elastic Search 发布说明中阅读有关这些功能以及更多内容。
  • 现有的 Elastic Cloud 客户可以直接从 Elastic Cloud 控制台访问许多这些功能。还没有使用 Elastic Cloud?开始免费试用。
  • 尝试 Elasticsearch Relevance Engine,我们的一套用于构建 AI 搜索应用程序的开发者工具。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

在这篇博文中,我们可能使用或引用了第三方生成人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。

Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标志是 Elasticsearch N.V. 的商标、徽标或注册商标。 在美国和其他国家。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。

原文:Accelerating generative AI experiences | Elastic Blog文章来源地址https://www.toymoban.com/news/detail-853487.html

到了这里,关于Elastic:加速生成式人工智能体验的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【人工智能】实现非局部加速器算法的奥秘

    作者:禅与计算机程序设计艺术 随着计算机技术的飞速发展,深度学习和神经网络的火热,人工智能领域的研究也呈现出爆炸性的增长。近几年,“非局部加速器(NLA)”的概念越来越火热,其关键在于如何提升计算效率。然而,对于NLA的实际应用效果如何,目前还没有形成

    2024年02月06日
    浏览(34)
  • ASIC加速技术在人工智能领域的创新与挑战

    人工智能 (AI) 是当今世界最热、最受关注的领域之一。随着深度学习、自然语言处理、计算机视觉等技术的发展,AI 应用越来越广泛,从智能家居到自动驾驶汽车,从医疗诊断到金融交易,各个领域都需要AI 技术的加入。但是,AI 的发展也面临着许多挑战。其中,ASIC加速技术

    2024年02月07日
    浏览(58)
  • 发现最优秀的人工智能对话体验

    Tomchat:点击传送 支持gpt4 / gpt-3.5 / claude 支持 AI绘画 每天十次免费使用机会 无需魔法 wuguokai 这个网站是设计模式老师推荐的,不强制用户。并且满足毫秒级响应。 https://chat.wuguokai.cn AIDuTu 无需登录,直接使用,挺好的 https://chat.jubianxingqiu.com/

    2024年02月15日
    浏览(38)
  • 【头歌平台】人工智能-深度学习初体验

    第一题 神经网络中也有神经元,这些神经元也会与其他神经元相连接,这样就形成了神经网络,而且这种网络我们称之为 全连接网络 。如下图所示( 方块表示神经元 ): 从图可以看出,神经网络由一层一层的神经元所构成的,并且不同的层有不同的名字。其中 输入层 表示用

    2024年02月08日
    浏览(49)
  • 人工智能与旅行:个性化体验的未来

    随着人工智能技术的不断发展,它已经成为了许多行业中的重要驱动力。旅行行业也不例外。人工智能技术在旅行行业中的应用非常广泛,包括但不限于旅行路线推荐、酒店预订、机票预订、旅游景点推荐等。在这篇文章中,我们将深入探讨人工智能在旅行行业中的应用,以

    2024年02月19日
    浏览(55)
  • 【Bard】谷歌的人工智能工具—Bard初体验

    Bard申请并访问入口:https://bard.google.com/ 自ChatGPT横空出世以来,围绕GPT的话题只增不减,属于AI+的时代已经悄然来临。科技在进步,人类在发展。近期,各大厂商纷纷推出了自己的产品和服务并在持续的更新迭代优化当中。如,微软的New Bing、谷歌的Bard、百度的文心一言等等

    2023年04月14日
    浏览(78)
  • 发现最优秀的类似chatgpt的人工智能对话体验

    Tomchat:点击传送 支持gpt4 / gpt-3.5 / claude 支持 AI绘画 每天十次免费使用机会 无需魔法 wuguokai 这个网站是设计模式老师推荐的,不强制用户。并且满足毫秒级响应。 https://chat.wuguokai.cn AIDuTu 无需登录,直接使用,挺好的 https://chat.jubianxingqiu.com/

    2024年02月14日
    浏览(44)
  • 百度AI 人工智能可以申请体验了,附登录方式

    百度发布了一款名为“文心一言”的知识增强大语言 AI 模型, 它基于百度飞桨深度学习平台和文心知识增强大模型,旨在帮助人们从大量信息中挑选所需内容,获取灵感和知识,以使生活和工作更加便捷。该模型具有强大的中文语料库,可用于文学创作、文案创作、多模态

    2024年02月15日
    浏览(53)
  • 文心一言APP官网:一站式人工智能体验平台

    大家好,小发猫降ai今天来聊聊文心一言APP官网:一站式人工智能体验平台,希望能给大家提供一点参考。降ai辅写 以下是针对论文AI辅写率高的情况,提供一些修改建议和技巧,可以借助此类工具: 还有: 文心一言APP官网:一站式人工智能体验平台 在当今数字化时代,人工

    2024年03月14日
    浏览(55)
  • 人工智能与虚拟现实的融合:超现实的体验

    虚拟现实(Virtual Reality, VR)和人工智能(Artificial Intelligence, AI)是两个独立的技术领域,但它们在近年来的发展中越来越密切相关。虚拟现实技术可以为用户提供一个与现实世界相似的虚拟环境,让用户在这个环境中进行交互。而人工智能技术则可以为虚拟现实系统提供智能功能

    2024年04月25日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包