SfM——八点法计算F矩阵(基础矩阵)与三角测量

这篇具有很好参考价值的文章主要介绍了SfM——八点法计算F矩阵(基础矩阵)与三角测量。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 八点法计算F矩阵(基础矩阵)

基础矩阵用于描述两个视图之间的几何关系

  1. 基础矩阵:基础矩阵 F F F 是描述两个视图之间相机投影关系的矩阵。对于两个对应的图像坐标点 ( x , y , 1 ) (x, y, 1) (x,y,1) ( u , v , 1 ) (u, v, 1) (u,v,1)​ 在两个视图上,基础矩阵满足以下方程:

    这个方程即对极约束,描述了图像中对应点的投影关系

[ u v 1 ] T ⋅ F ⋅ [ x y 1 ] = 0 \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}^T \cdot F \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 uv1 TF xy1 =0

  1. 线性系统:对于多对对应点,可以构建一个线性方程系统 A f = 0 Af = 0 Af=0 ,其中 A A A 是由对应点生成的矩阵, f f f​ 是基础矩阵的扁平形式

    上述方程即:

[ u v 1 ] ⋅ [ f 11 f 12 f 13 f 21 f 22 f 23 f 31 f 32 f 33 ] ⋅ [ x y 1 ] = 0 \begin{bmatrix} u & v & 1 \end{bmatrix} \cdot \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 [uv1] f11f21f31f12f22f32f13f23f33 xy1 =0

​ 展开得到:

[ u x v x x u y v y y u v 1 ] ⋅ [ f 11 f 12 f 13 f 21 f 22 f 23 f 31 f 32 f 33 ] = 0 \begin{bmatrix} ux&vx&x&uy&vy&y&u&v&1 \end{bmatrix}\cdot \begin{bmatrix}f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \\ \end{bmatrix} = 0 [uxvxxuyvyyuv1] f11f12f13f21f22f23f31f32f33 =0

​ 这个矩阵方程可以表示为 A i f = 0 A_if = 0 Aif=0

​ 为了解出这个9个未知数的 f f f ,我们至少需要8对点,所以叠加 A i A_i Ai 得到 A A A 矩阵

A = [ x 1 u 1 x 1 v 1 x 1 y 1 u 1 y 1 v 1 y 1 u 1 v 1 1 x 2 u 2 x 2 v 2 x 2 y 2 u 2 y 2 v 2 y 2 u 2 v 2 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x 8 u 8 x 8 v 8 x 8 y 8 u 8 y 8 v 8 y 8 u 8 v 8 1 ] A = \begin{bmatrix} x_1u_1 & x_1v_1 & x_1 & y_1u_1 & y_1v_1 & y_1 & u_1 & v_1 & 1 \\ x_2u_2 & x_2v_2 & x_2 & y_2u_2 & y_2v_2 & y_2 & u_2 & v_2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_8u_8 & x_8v_8 & x_8 & y_8u_8 & y_8v_8 & y_8 & u_8 & v_8 & 1 \end{bmatrix} A= x1u1x2u2x8u8x1v1x2v2x8v8x1x2x8y1u1y2u2y8u8y1v1y2v2y8v8y1y2y8u1u2u8v1v2v8111

  1. 最小二乘法:通过奇异值分解(SVD),取 V T V^T VT 的最后一列作为估计矩阵 A A A 的最小二乘解,即 f f f

    方程的最小二乘解有一个既定的结论,即对 A A A 进行SVD分解,得到的 V T V^T VT 的最后一行 即是 f f f 的解

  2. 基础矩阵还原:将 f f f reshape 为 3 × 3 3 \times 3 3×3​ 的矩阵,然后通过奇异值分解(SVD)对矩阵进行调整,以确保基础矩阵的秩为2

    • SVD分解:
      对矩阵 F F F 进行奇异值分解: F = U Σ V T F = U \Sigma V^T F=UΣVT ,其中 U U U V V V 是正交矩阵, Σ \Sigma Σ 是对角矩阵

    • 秩-2约束:
      将奇异值矩阵 Σ \Sigma Σ 调整为仅保留前两个奇异值(将第三个奇异值设为0),以确保基础矩阵的秩为2

    • 重构基础矩阵:
      F = U Σ ′ V T F = U \Sigma' V^T F=UΣVT

    F = f.reshape((3, 3))
    
    # 对F进行SVD分解
    U, S, Vt = np.linalg.svd(F)
    
    # 将奇异值矩阵Sigma调整为仅保留前两个奇异值(第三个设为0)
    S[2] = 0
    
    # 重构基础矩阵F
    F = np.dot(U, np.dot(np.diag(S), Vt))
    
  3. 归一化:对基础矩阵进行归一化,以确保尺度的一致性

2 标准化八点算法

对普通的八点算法进行了改进,通过标准化输入数据,提高了算法的稳健性和准确性

  1. 我们首先将对应点标准化为零均值和单位方差,以消除尺度的影响

    mean1 = np.mean(keypoints1, axis=0)
    mean2 = np.mean(keypoints2, axis=0)
    std1 = np.std(keypoints1, axis=0)
    std2 = np.std(keypoints2, axis=0)
    # 防止除0,由于齐次坐标,标准差std算得最后一项为0
    std1[2] = 1
    std2[2] = 1
    nomalized_points1 = (keypoints1 - mean1) / std1
    nomalized_points2 = (keypoints2 - mean2) / std2
    

x ˉ = x − μ x ˉ σ x \bar{x} = \frac{x - \bar{\mu_x}}{\sigma_x} xˉ=σxxμxˉ

也等于左乘一个转换矩阵 T T T

T = [ 1 σ x 0 − μ x σ x 0 1 σ y − μ y σ y 0 0 1 ] T = \begin{bmatrix} \frac{1}{\sigma_x} & 0 & -\frac{\mu_x}{\sigma_x} \\ 0 & \frac{1}{\sigma_y} & -\frac{\mu_y}{\sigma_y} \\ 0 & 0 & 1 \end{bmatrix} T= σx1000σy10σxμxσyμy1

  1. 在这些标准化点上运行八点算法

  2. 最后对得到的基本矩阵进行反变换,在计算基础矩阵后,需要将其进行撤销标准化处理,以获得最终的基础矩阵

F = T 2 − 1 ⋅ F n o r m a l i z e d ⋅ T 1 F = T_2^{-1} \cdot F_{normalized} \cdot T_1 F=T21FnormalizedT1

3 三角测量

我们有两个相机,它们的c分别为 P 1 P_1 P1 P 2 P_2 P2 3 × 4 3 \times 4 3×4​ 矩阵)。

P = K [ R ∣ t ] P = K\begin{bmatrix}R|t\end{bmatrix} P=K[Rt]

对于一个在相机1和相机2中分别观察到的同一物体的对应点 x ~ 1 \tilde x_1 x~1 x ~ 2 \tilde x_2 x~2 (齐次坐标 3 × 1 3 \times 1 3×1 向量) ,我们可以得到以下方程:其中, X ~ \tilde X X~ (齐次坐标 4 × 1 4 \times 1 4×1 向量)是物体在三维空间中的坐标

P 1 X ~ = x ~ 1 P 2 X ~ = x ~ 2 P_1 \tilde X =\tilde x_1\\ P_2 \tilde X =\tilde x_2 P1X~=x~1P2X~=x~2

P P P 分解为三个向量:

P i = [ P i 1 P i 2 P i 3 ] P i 1 = [ p 11 , p 12 , p 13 , p 14 ] P i 2 = [ p 21 , p 22 , p 23 , p 24 ] P i 3 = [ p 31 , p 32 , p 33 , p 34 ] P_i =\begin{bmatrix}P_{i1}\\ P_{i2} \\ P_{i3} \end{bmatrix} \\ P_{i1} = [p_{11}, p_{12}, p_{13}, p_{14}] \\ P_{i2} = [p_{21}, p_{22}, p_{23}, p_{24}] \\ P_{i3} = [p_{31}, p_{32}, p_{33}, p_{34}] \\ Pi= Pi1Pi2Pi3 Pi1=[p11,p12,p13,p14]Pi2=[p21,p22,p23,p24]Pi3=[p31,p32,p33,p34]

这样,原等式就变为:

[ P i 1 X ~ P i 2 X ~ P i 3 X ~ ] = [ x i y i 1 ] \begin{bmatrix}P_{i1}\tilde X \\ P_{i2}\tilde X \\ P_{i3}\tilde X\end{bmatrix} =\begin{bmatrix}x_i \\ y_i \\ 1\end{bmatrix} Pi1X~Pi2X~Pi3X~ = xiyi1

将左边向量齐次化除以第三个元素,与右边向量元素一一对应:

P i X ~ = [ P i 1 X ~ P i 3 X ~ P i 2 X ~ P i 3 X ~ 1 ] = [ x i y i 1 ] = x ~ i x i = P i 1 X ~ P i 3 X ~ ⇒ x i P i 3 X ~ − P i 1 X ~ = 0 y i = P i 2 X ~ P i 3 X ~ ⇒ y i P i 3 X ~ − P i 2 X ~ = 0 P_i \tilde X = \begin{bmatrix} \frac{P_{i1} \tilde X}{P_{i3}\tilde X} \\ \frac{P_{i2} \tilde X}{P_{i3} \tilde X} \\ 1 \end{bmatrix}= \begin{bmatrix}x_i \\ y_i \\ 1 \end{bmatrix} = \tilde x_i \\ x_i = \frac{P_{i1} \tilde X}{P_{i3} \tilde X} \Rightarrow x_iP_{i3} \tilde X-P_{i1} \tilde X = 0 \\ y_i = \frac{P_{i2} \tilde X}{P_{i3} \tilde X} \Rightarrow y_iP_{i3} \tilde X-P_{i2} \tilde X = 0 PiX~= Pi3X~Pi1X~Pi3X~Pi2X~1 = xiyi1 =x~ixi=Pi3X~Pi1X~xiPi3X~Pi1X~=0yi=Pi3X~Pi2X~yiPi3X~Pi2X~=0

由于我们知道 x 1 x_1 x1 x 2 x_2 x2 P 1 P_1 P1 P 2 P_2 P2​​ ,我们可以将其转化为一个齐次线性方程组

A 1 = [ x 1 P 13 − P 11 y 1 P 13 − P 12 ] A 2 = [ x 2 P 23 − P 21 y 2 P 23 − P 22 ] A = [ A 1 A 2 ] A X ~ = 0 A_1 = \begin{bmatrix} x_1 P_{13} - P_{11} \\ y_1 P_{13} - P_{12} \end{bmatrix} \\ A_2 = \begin{bmatrix} x_2 P_{23} - P_{21} \\ y_2 P_{23} - P_{22} \end{bmatrix} \\ A = \begin{bmatrix}A_1 \\ A_2 \end{bmatrix} \\ A\tilde X = 0 A1=[x1P13P11y1P13P12]A2=[x2P23P21y2P23P22]A=[A1A2]AX~=0

A = np.array(
    [keypoint1[0] * P1[2] - P1[0],
     keypoint1[1] * P1[2] - P1[1],
     keypoint2[0] * P2[2] - P2[0],
     keypoint2[1] * P2[2] - P2[1]]
)

这样我们就可以使用最小二乘法或其他方法来解决这个线性方程组,从而找到物体的三维位置 X X X文章来源地址https://www.toymoban.com/news/detail-853707.html

# DLT算法解决最小二乘法
_, _, Vt = np.linalg.svd(A)
x_w = Vt[-1]
x_w = x_w / x_w[3] # 齐次坐标

到了这里,关于SfM——八点法计算F矩阵(基础矩阵)与三角测量的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • photoscan(metashape)跑GPS辅助的无人机影像SfM(空三)教程

      刚打开的photoscan界面如下图所示:   然后,点击工作区左上角的添加堆块选项:   可以看到新增了一个名为“Chunk 1”的堆块,然后,右击“Chunk 1”,依次选择add、添加照片:   即可弹出照片选择窗口,到指定目录下全选图像,然后点击打开即可:   之后,在

    2024年02月13日
    浏览(42)
  • SFM(Structure from Motion)和NeRF(Neural Radiance Fields)

    SFM(Structure from Motion)和NeRF(Neural Radiance Fields)都是计算机视觉领域中的重要算法,用于不同的任务和应用。 SFM(Structure from Motion): SFM是一种从图像序列中重建三维场景的技术。它通过分析相机在不同视角下捕获的图像来推断场景的三维结构和摄像机的运动。SFM算法可以

    2024年02月13日
    浏览(35)
  • 【视觉SLAM入门】5.1. 特征提取和匹配--FAST,ORB(关键点描述子),2D-2D对极几何,本质矩阵,单应矩阵,三角测量,三角化矛盾

    为什么重要?我们是在做什么事? 特征提取和匹配: 首先是两幅图像的特征提取,然后是对应特征点的匹配。接下来的工作是根据得到的匹配点对,估计相机的运动,具体根据相机分为三种方法: 单目相机:2D-2D: 对极几何 方法 双目或者RGBD相机: 3D-3D: ICP 方法 一个3D点

    2024年02月13日
    浏览(42)
  • 【视觉SLAM入门】5.1. (基于特征点的视觉里程计)特征提取和匹配--FAST,ORB(关键点描述子),2D-2D对极几何,本质矩阵,单应矩阵,三角测量,三角化矛盾

    为什么重要?我们是在做什么事? 特征提取和匹配: 首先是两幅图像的特征提取,然后是对应特征点的匹配。接下来的工作是根据得到的匹配点对,估计相机的运动,具体根据相机分为三种方法: 单目相机:2D-2D: 对极几何 方法 双目或者RGBD相机: 3D-3D: ICP 方法 一个3D点

    2024年02月10日
    浏览(37)
  • 激光三角测量法

    #激光三角法原理 三种 原理: 通过激光,CCD相机的关系,角度,相距,物距,然后根据三角形相似性列方程,求解高度。 激光三角测量法是利用光线空间传播过程中的光学反射规律和相似三角形原理,在接收透镜的物空间与像空间构成相似关系,同时利用边角关系计算出待

    2024年02月09日
    浏览(46)
  • 随手笔记——实践:三角测量

    使用OpenCV 提供的 triangulation 函数进行三角化 cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d);

    2024年02月16日
    浏览(37)
  • 计算机视觉基础:【矩阵】矩阵选取子集

    OpenCV的基础是处理图像,而图像的基础是矩阵。 因此,如何使用好矩阵是非常关键的。 下面我们通过一个具体的实例来展示如何通过Python和OpenCV对矩阵进行操作,从而更好地实现对图像的处理。 示例:选取矩阵中指定的行和列的交集。 例如,在下图中选定第2行、第3行和第

    2024年02月21日
    浏览(35)
  • 求与矩阵相似的三角矩阵

    要求一个矩阵与给定矩阵相似,可以通过将该矩阵对角化的方法来实现。对角化的过程可以分解为两个步骤:首先找到该矩阵的特征值和特征向量,然后将特征向量按列组成的矩阵和一个对角矩阵相乘,得到相似的对角矩阵。 如果要求与矩阵 A A A 相似的三角矩阵,可以进行

    2024年02月08日
    浏览(40)
  • 入门必学 | R语言将全矩阵转化为上三角或下三角矩阵

       将全矩阵转化成上三角矩阵或者下三角矩阵,这是R语言基础,入门必学。在过程中,主要使用diag函数以及matrix、paste、dim、t等函数的使用。 输出结果: 温馨提醒: paste函数是一个很常用的函数,主要用于命名,尤其是在写循环的时候这个函数更为常见。今天主要与大

    2024年02月09日
    浏览(40)
  • 3.矩阵计算及导数基础

    将导数拓展到向量。 x是列向量,y是标量,求导之后变成了行向量 ps: x1^2 + 2x2^2 这个函数可以画成等高线,对于(x1,x2)这个点,可以做等高线的切线,再做出正交方向(2,4),这个正交方向和梯度是一样的,也就是梯度和等高线是正交的,意味着 梯度指向的是值变化最大

    2024年02月07日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包