解锁深度表格学习(Deep Tabular Learning)的关键:算术特征交互

这篇具有很好参考价值的文章主要介绍了解锁深度表格学习(Deep Tabular Learning)的关键:算术特征交互。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

近日,阿里云人工智能平台PAI与浙江大学吴健、应豪超老师团队合作论文《Arithmetic Feature Interaction is Necessary for Deep Tabular Learning》正式在国际人工智能顶会AAAI-2024上发表。本项工作聚焦于深度表格学习中的一个核心问题:在处理结构化表格数据(tabular data)时,深度模型是否拥有有效的归纳偏差(inductive bias)。我们提出算术特征交互(arithmetic feature interaction)对深度表格学习是至关重要的假设,并通过创建合成数据集以及设计实现一种支持上述交互的AMFormer架构(一种修改的Transformer架构)来验证这一假设。实验结果表明,AMFormer在合成数据集表现出显著更优的细粒度表格数据建模、训练样本效率和泛化能力,并在真实数据的对比上超过一众基准方法,成为深度表格学习新的SOTA(state-of-the-art)模型。

背景

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

图1:结构化表格数据示例,引用自[Borisov et al.]

结构化表格数据——这些数据往往以表(Table)的形式存储于数据库或数仓中——作为一种在金融、市场营销、医学科学和推荐系统等多个领域广泛使用的重要数据格式,其分析一直是机器学习研究的热点。表格数据(图1)通常同时包含数值型(numerical)特征和类目型(categorical)特征,并往往伴随有特征缺失、噪声、类别不平衡(class imblanance)等数据质量问题,且缺少时序性、局部性等有效的先验归纳偏差,极大地带来了分析上的挑战。传统的树集成模型(如,XGBoost、LightGBM、CatBoost)因在处理数据质量问题上的鲁棒性,依然是工业界实际建模的主流选择,但其效果很大程度依赖于特征工程产出的原始特征质量。

随着深度学习的流行,研究者试图引入深度学习端到端建模,从而减少在处理表格数据时对特征工程的依赖。相关的研究工作至少可以可以分成四大类:(1)在传统建模方法中叠加深度学习模块(通常是多层感知机MLP),如Wide&Deep、DeepFMs;(2)形状函数(shape function)采用深度学习建模的广义加性模型(generalized additive model),如 NAM、NBM、SIAN;(3)树结构启发的深度模型,如NODE、Net-DNF;(4)基于Transformer架构的模型,如AutoInt、DCAP、FT-Transformer。尽管如此,深度学习在表格数据上相比树模型的提升并不显著且持续,其有效性仍然存在疑问,表格数据因此被视为深度学习尚未征服的最后堡垒。

算术特征交互在深度表格学习的“必要性”

我们认为现有的深度表格学习方法效果不尽如人意的关键症结在于没有找到有效的建模归纳偏差,并进一步提出算术特征交互对深度表格学习是至关重要的假设。本节介绍我们通过创建一个合成数据集,并对比引入算数特征交互前后的模型效果,来验证该假设。

合成数据集的构造方法如下:我们设计了一个包含八个特征(  )的合成数据集。

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

图2:合成数据集上的结果对比。图中+x%表示AMFormer相比Transformer的相对提升。

在上述数据中,我们将引入了算数特征交互的AMFormer架构与经典的XGBoost和Transformer架构对比。实验结果显示:

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

以上结果共同证实了算术特征交互在深度表格学习中的显著意义。

算法架构

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

图3:AMFormer架构,其中L表示模型层数。

本节介绍AMFormer架构(图3),并重点介绍算数特征交互的引入。AMFormer架构借鉴了经典的Transformer框架,并引入了Arithmetic Block来增强模型的算术特征交互能力。在AMFormer中,我们首先将原始特征转换为具有代表性的嵌入向量,对于数值特征,我们使用一个1输入d输出的线性层;对于类别特征,则使用一个d维的嵌入查询表。之后,这些初始嵌入通过L个顺序层进行处理,这些层增强了嵌入向量中的上下文和交互元素。每一层中的算术模块采用了并行的加法和乘法注意力机制,以刻意促进算术特征之间的交互。为了促进梯度流动和增强特征表示,我们保留了残差连接和前馈网络。最终,依据这些丰富的嵌入向量,AMFormer使用分类或回归头部生成最终输出。

算术模块的关键组件包括并行注意力机制和提示标记。为了补偿需要算术特征交互的特征,我们在AMFormer中配置了并行注意力机制,这些机制负责提取有意义的加法和乘法交互候选者。这些交互候选随着会沿着候选维度被串联(concatenate)起来,并通过一个下采样的线性层进行融合,使得AMFormer的每一层都能有效捕捉算术特征交互,即特征上的四则算法运算。为了防止由特征冗余引起的过拟合并提升模型在超大规模特征数据集上的伸缩,我们放弃了原始Transformer架构中平方复杂度的自注意力机制,而是使用两组提示向量(prompt token vectors)作为加法和乘法查询。这种方法为AMFormer提供了有限的特征交互自由度,并且作为一个附带效果,优化了内存占用和训练效率。

以上是AMFormer在架构层引入的主要创新,关于模型更详细的实现细节可以参考原文以及我们的开源实现。

进一步实验结果

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

表1:真实数据集统计以及评估指标。

为了进一步展示AMFormer的效果,我们挑选了四个真实数据集进行实验。被挑选数据集覆盖了二分类、多分类以及回归任务,数据集统计如表1所示。

深度表格模型,云栖号技术分享,学习,大数据,深度学习,云计算

表2:AMFormer以及基准方法的性能对比,其中括号内的数字表示该方法在当前数据集上表现的排名,最优以及次优的结果分别以加粗以及下划线突出。

我们一共测试了包含传统树模型(XGBoost)、树架构深度学习方法(NODE)、高阶特征交互(DCN-V2、DCAP)以及Transformer派生架构(AutoInt、FT-Trans)在内的六个基准算法以及两个AMFormer实现(分别选择AutoInt、FT-Trans做基础架构,即AMF-A和AMF-F),结果汇总在表2中。

在一系列对比实验中,AMFormer表现更突出。结果显示,基于MLP的深度学习方法如DCN-V2在表格数据上的性能不尽如人意,而基于Transformer架构的模型显示出更大的潜力,但未能始终超过树模型XGBoost。我们的AMFormer在四个不同的数据集上,与所有六个基准模型相比,表现一致更优:在分类任务中,它将AutoInt和FT-transformer的准确率或AUC提升至少0.5%,最高达到1.23%(EP)和4.96%(CO);在回归任务中,它也显著减少了平均平方误差。相比其它深度表格学习方法,AMFormer具有更好的鲁棒和稳定性,这使得在性能排序中AMFormer断层式优于其它基准算法,这些实验结果充分证明了AMFormer在深度表格学习中的必要性和优越性。

结论

本工作研究了深度模型在表格数据上的有效归纳偏置。我们提出,算术特征交互对于表格深度学习是必要的,并将这一理念融入Transformer架构中,创建了AMFormer。我们在合成数据和真实世界数据上验证了AMFormer的有效性。合成数据的结果展示了其在精细表格数据建模、训练数据效率以及泛化方面的优越能力。此外,对真实世界数据的广泛实验进一步确认了其一致的有效性。因此,我们相信AMFormer为深度表格学习设定了强有力的归纳偏置。

进一步阅读

● 论文标题:

Arithmetic Feature Interaction is Necessary for Deep Tabular Learning

● 论文作者:

程奕、胡仁君、应豪超、施兴、吴健、林伟

● 论文PDF链接:https://arxiv.org/abs/2402.02334

● 代码链接:https://github.com/aigc-apps/AMFormer

原文链接

本文为阿里云原创内容,未经允许不得转载。文章来源地址https://www.toymoban.com/news/detail-853880.html

到了这里,关于解锁深度表格学习(Deep Tabular Learning)的关键:算术特征交互的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Deep Learning Tuning Playbook(深度学习调参手册中译版)

    由五名研究人员和工程师组成的团队发布了《Deep Learning Tuning Playbook》,来自他们自己训练神经网络的实验结果以及工程师的一些实践建议,目前在Github上已有1.5k星。原项目地址 本文为《Deep Learning Tuning Playbook》中文翻译版本,全程手打,非机翻。因为本人知识水平有限,翻

    2023年04月27日
    浏览(71)
  • 基于深度学习的语音识别(Deep Learning-based Speech Recognition)

    随着科技的快速发展,人工智能领域取得了巨大的进步。其中,深度学习算法以其强大的自学能力,逐渐应用于各个领域,并取得了显著的成果。在语音识别领域,基于深度学习的技术也已经成为了一种主流方法,极大地推动了语音识别技术的发展。本文将从深度学习算法的

    2024年02月04日
    浏览(55)
  • 深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning

    偏理论,假设情况不易发生 多智能体强化学习的换道策略,不同的智能体在每一轮学习后交换策略,达到零和博弈。 和谐驾驶仅依赖于单个车辆有限的感知结果来平衡整体和个体效率,奖励机制结合个人效率和整体效率的和谐。 自动驾驶不能过分要求速度性能, 考虑单个车

    2024年01月17日
    浏览(43)
  • 基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)

    物体检测的应用已经深入到我们的日常生活中,包括安全、自动车辆系统等。对象检测模型输入视觉效果(图像或视频),并在每个相应对象周围输出带有标记的版本。这说起来容易做起来难,因为目标检测模型需要考虑复杂的算法和数据集,这些算法和数据集在我们说话的时

    2024年02月11日
    浏览(37)
  • 第二章:Learning Deep Features for Discriminative Localization ——学习用于判别定位的深度特征

            在这项工作中,我们重新审视了在[13]中提出的全局平均池化层,并阐明了它如何明确地使卷积神经网络(CNN)具有出色的定位能力,尽管它是在图像级别标签上进行训练的。虽然这个技术之前被提出作为一种训练规范化的手段, 但我们发现它实际上构建了一个通

    2024年02月15日
    浏览(36)
  • 基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)

    一步一步教你建立手写数字识别项目,需要源文件的请可直接跳转下边的链接:All project 在本文中,我们将使用MNIST数据集实现一个手写数字识别应用程序。我们将使用一种特殊类型的深度神经网络,即卷积神经网络。最后,我们将构建一个GUI,您可以在其中绘制数字并立即

    2024年02月11日
    浏览(37)
  • 商简智能学术成果|基于深度强化学习的联想电脑制造调度(Lenovo Schedules Laptop Manufacturing Using Deep Reinforcement Learning)

    获取更多资讯,赶快关注上面的公众号吧!   本篇论文作为商简智能的最新研究成果,发表于运筹学顶刊《INFORMS JOURNAL ON APPLIED ANALYTICS》, 首次将深度强化学习落地于大规模制造调度场景 ,该先进排程项目入围国际运筹学权威机构 INFORMS运筹学应用最高奖——Franz Edelman

    2024年02月09日
    浏览(139)
  • Deep Learning-学习笔记

    deep learning训练过程 如果对所有层同时训练,时间复杂度会太高;如果每次训练一层,偏差就会逐层传递。这会面临跟上面监督学习中相反的问题,会严重欠拟合(因为深度网络的神经元和参数太多了)。 2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,

    2024年02月12日
    浏览(36)
  • 2 机器学习知识 Softmax回归 deep learning system

    The hypothesis class: 模型结构 loss fuction 损失函数 An optimization method:在训练集上减小loss的方法 训练数据: x ( i ) ∈ R n , y ( i ) ∈ 1 , . . . , k f o r i = 1 , . . . m x^{(i)}in mathbb{R}^n ,y^{(i)}in {1,...,k} for i=1,...m x ( i ) ∈ R n , y ( i ) ∈ 1 , ... , k f or i = 1 , ... m n 是输入数据的维度,输入的每

    2024年02月05日
    浏览(42)
  • Reinforcement Learning with Code 【Code 1. Tabular Q-learning】

    This note records how the author begin to learn RL. Both theoretical understanding and code practice are presented. Many material are referenced such as ZhaoShiyu’s Mathematical Foundation of Reinforcement Learning . This code refers to Mofan’s reinforcement learning course . Please consider the problem that a little mouse (denoted by red block) wants to

    2024年02月14日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包