【计算机视觉】YOLOv9:物体检测技术的飞跃发展

这篇具有很好参考价值的文章主要介绍了【计算机视觉】YOLOv9:物体检测技术的飞跃发展。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

YOLOv9 引入了可编程梯度信息 (PGI) 和广义高效层聚合网络 (GELAN) 等开创性技术,标志着实时目标检测领域的重大进步。该模型在效率、准确性和适应性方面都有显著提高,在 MS COCO 数据集上树立了新的标杆。YOLOv9 项目虽然是由一个独立的开源团队开发的,但它建立在以下机构提供的强大代码库基础之上 UltralyticsYOLOv5提供的强大代码库,展示了人工智能研究界的协作精神。

yolov9,计算机视觉,计算机视觉,人工智能

一、YOLOv9 简介

在追求最佳实时物体检测的过程中,YOLOv9 以其创新的方法克服了深度神经网络固有的信息丢失难题,脱颖而出。通过整合 PGI 和多功能 GELAN 架构,YOLOv9 不仅增强了模型的学习能力,还确保了在整个检测过程中保留关键信息,从而实现了卓越的准确性和性能。

二、YOLOv9 的核心创新

YOLOv9 的进步深深扎根于解决深度神经网络中信息丢失所带来的挑战。信息瓶颈原理和可逆函数的创新使用是其设计的核心,可确保 YOLOv9 保持高效率和高精度。

三、信息瓶颈原理

信息瓶颈原理揭示了深度学习中的一个基本挑战:当数据通过网络的连续层时,信息丢失的可能性会增加。这一现象在数学上表现为:

I(X, X) >= I(X, f_theta(X)) >= I(X, g_phi(f_theta(X)))

其中 I 表示互信息,而 f 和 g 表示带参数的变换函数 theta 和 phi分别为YOLOv9 通过实施可编程梯度信息(PGI)应对了这一挑战,PGI 有助于保留整个网络深度的重要数据,确保更可靠的梯度生成,从而提高模型的收敛性和性能。

四、可逆函数

可逆函数的概念是 YOLOv9 设计的另一个基石。如果一个函数可以在不丢失任何信息的情况下被反转,那么这个函数就被认为是可逆的:

X = v_zeta(r_psi(X))

与 psi 和 zeta 分别作为可逆函数及其反函数的参数。这一特性对深度学习架构至关重要,因为它能让网络保留完整的信息流,从而更准确地更新模型参数。YOLOv9 在其架构中加入了可逆函数,以降低信息退化的风险,尤其是在较深的层中,从而确保为物体检测任务保留关键数据。

五、对轻型模型的影响

解决信息丢失问题对于轻量级模型尤为重要,因为轻量级模型通常参数化不足,在前馈过程中容易丢失大量信息。YOLOv9 的架构通过使用 PGI 和可逆函数,确保即使是精简的模型,也能保留并有效利用准确检测物体所需的基本信息。

六、可编程梯度信息 (PGI)

PGI 是 YOLOv9 为解决信息瓶颈问题而引入的一个新概念,可确保在深层网络中保留重要数据。这样就可以生成可靠的梯度,促进模型的准确更新,提高整体检测性能。

七、通用高效层聚合网络(GELAN)

GELAN 是一项战略性的架构进步,使 YOLOv9 能够实现更高的参数利用率和计算效率。它的设计允许灵活集成各种计算模块,使 YOLOv9 能够适应广泛的应用,而不会牺牲速度或精度。

yolov9,计算机视觉,计算机视觉,人工智能

八、MS COCO 数据集的性能

YOLOv9 在COCO 数据集上的表现体现了其在实时物体检测方面的显著进步,为各种模型大小设定了新的基准。表 1 对最先进的实时物体检测器进行了全面比较,显示了 YOLOv9 的卓越效率和准确性。

表 1.最新实时物体检测器的比较

yolov9,计算机视觉,计算机视觉,人工智能
YOLOv9 的迭代,从较小的 S 变体到广泛的 E 模型,不仅在精度(AP 指标)上有所改进,而且在参数数量和计算需求(FLOPs)减少的情况下提高了效率。该表强调了 YOLOv9 在提供高精度的同时,与之前的版本和竞争模型相比保持或减少计算开销的能力。

与之相比,YOLOv9 则有显著提高:

  • 轻量级模型:YOLOv9-S 在参数效率和计算负荷方面超过了YOLO MS-S,同时在 AP 方面提高了 0.4% 至 0.6%。
  • 中大型模型:YOLOv9-M 和 YOLOv9-E 在平衡模型复杂性和检测性能之间的权衡方面取得了显著进步,在提高精度的同时大幅减少了参数和计算量。

YOLOv9-C 模型尤其凸显了架构优化的有效性。与 YOLOv7 AF 相比,它的运行参数减少了 42%,计算需求减少了 21%,但却达到了相当的精度,这表明 YOLOv9 的效率有了显著提高。此外,YOLOv9-E 模型还为大型模型设定了新标准,其参数比 YOLOv7 AF 少 15%,计算需求比 YOLOv7 AF 少 25%。 YOLOv8x相比,参数减少了 15%,计算需求减少了 25%,同时 AP 大幅提高了 1.7%。

这些结果展示了 YOLOv9 在模型设计方面的战略性进步,强调了它在提高效率的同时并没有降低实时物体检测任务所必需的精度。该模型不仅推动了性能指标的发展,而且强调了计算效率的重要性,使其成为计算机视觉领域的一项关键性发展。

九、结论

YOLOv9 代表了实时目标检测领域的关键发展,在效率、准确性和适应性方面都有显著提高。通过 PGI 和 GELAN 等创新解决方案解决关键挑战,YOLOv9 为该领域的未来研究和应用开创了新的先例。随着人工智能领域的不断发展,YOLOv9 充分证明了合作与创新在推动技术进步方面的力量。

十、使用示例

本示例提供了简单的 YOLOv9 训练和推理示例。有关这些模式和其他模式的完整文档,请参阅Predict、Train、Val和Export文档页面。

from ultralytics import YOLO

# Build a YOLOv9c model from scratch
model = YOLO('yolov9c.yaml')

# Build a YOLOv9c model from pretrained weight
model = YOLO('yolov9c.pt')

# Display model information (optional)
model.info()

# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)

# Run inference with the YOLOv9c model on the 'bus.jpg' image
results = model('path/to/bus.jpg')

十一、支持的任务和模式

YOLOv9 系列提供一系列型号,每个型号都针对高性能物体检测进行了优化。这些型号可满足不同的计算需求和精度要求,因此可广泛用于各种应用。

yolov9,计算机视觉,计算机视觉,人工智能

本表提供了 YOLOv9 模型变体的详细概述,重点介绍了它们在物体检测任务中的功能以及与推理、验证、训练和导出等各种操作模式的兼容性。这种全面的支持可确保用户在各种物体检测场景中充分利用 YOLOv9 模型的功能。文章来源地址https://www.toymoban.com/news/detail-854162.html

到了这里,关于【计算机视觉】YOLOv9:物体检测技术的飞跃发展的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于深度学习的计算机视觉:应用于智能检测和识别的新技术

    作者:禅与计算机程序设计艺术 目前,深度学习技术在图像处理、目标检测、对象识别等领域已经取得了显著的进步。随着大数据的产生、深度神经网络的不断提升,计算机视觉领域也成为自然界图像理解的一项热门研究方向。近年来,基于深度学习的卷积神经网络(CNN)在

    2024年02月06日
    浏览(51)
  • 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】计算机视觉(基础篇)(三)

    目录 几个高频面试题目 计算机视觉与图像处理、模式识别、机器学习学科之间的关系 全景图及计算机视觉技术 全景图的简易制作方式

    2024年02月03日
    浏览(43)
  • 图像识别和计算机视觉:如何应用人工智能技术实现自动化检测和识别

      在数字化时代,图像数据成为了我们日常生活中不可或缺的一部分。然而,随着图像数据的急剧增加,传统的手动处理和分析方法已经无法满足我们的需求。这就引出了图像识别和计算机视觉技术的重要性。本文将介绍人工智能技术在图像识别和计算机视觉领域的应用,以

    2024年02月05日
    浏览(81)
  • 【计算机视觉】---OpenCV实现物体追踪

    OpenCV中的物体追踪算法基于视觉目标跟踪的原理。物体追踪的目标是在连续的图像序列中定位和跟踪特定物体的位置。 在物体追踪中,我们需要对目标对象进行表示。通常使用边界框(bounding box)来表示目标的位置和大小。边界框是一个矩形区域,由左上角的坐标(x,y)和

    2024年02月08日
    浏览(48)
  • Python的计算机视觉与物体识别

    计算机视觉是一种通过计算机程序对图像进行处理和分析的技术。物体识别是计算机视觉中的一个重要分支,旨在识别图像中的物体、特征和属性。Python是一种流行的编程语言,拥有强大的计算机视觉库和框架,如OpenCV、TensorFlow和PyTorch。因此,使用Python进行计算机视觉和物

    2024年02月21日
    浏览(50)
  • 计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理

            激光雷达是目前正在改变世界的传感器。它集成在自动驾驶汽车、自主无人机、机器人、卫星、火箭等中。该传感器使用激光束了解世界,并测量激光击中目标返回所需的时间,输出是点云信息,利用这些信息,我们可以从3D点云中查找障碍物。         从自

    2024年02月07日
    浏览(52)
  • 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法

    作者简介 : 工学博士,高级工程师,专注于工业软件算法研究 本文已收录于专栏:《机器学习实用指南》本专栏旨在提供 1.机器学习 经典案例及源码 ;2.开源机器学习 训练数据集 ;3.机器学习前沿 专业博文 。以案例的形式从实用的角度出发,快速上手机器学习项目,在案

    2024年02月19日
    浏览(46)
  • 【计算机视觉】YOLOv8如何使用?(含源代码)

    comments description keywords true Boost your Python projects with object detection, segmentation and classification using YOLOv8. Explore how to load, train, validate, predict, export, track and benchmark models with ease. YOLOv8, Ultralytics, Python, object detection, segmentation, classification, model training, validation, prediction, model export, bench

    2024年02月04日
    浏览(47)
  • 【计算机视觉】不仅能分割一切简单物体,而且还能高精度分割一切复杂物体的SAM升级版本HQ-SAM来了

    相信很多朋友都对Facebook开源的Segement Anything(SAM)算法有很深的印象,当前SAM已经被开发出众多的热门应用,至今为止,可能已经有很多朋友用它来提升自己的工作与生产效率。 虽然SAM算法效果很好,但是当碰到复杂的图像分割任务时,SAM输出的效果并不能满足我们的需求。

    2024年02月06日
    浏览(57)
  • 改良YOLOv8网络架构 | 采用SwinTransformer网络 | 借助位移窗口实现视觉变换 | 计算机视觉

    改良YOLOv8网络架构 | 采用SwinTransformer网络 | 借助位移窗口实现视觉变换 | 计算机视觉 随着计算机视觉技术的不断发展,研究人员们也在不断尝试对各种神经网络进行改良,以提高它们的性能和准确度。其中比较流行的一个目标检测算法就是YOLOv8,但是它依然存在一些不足之处

    2024年02月08日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包