基于GAN的图像补全实战

这篇具有很好参考价值的文章主要介绍了基于GAN的图像补全实战。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据与代码地址见文末

论文地址:http://iizuka.cs.tsukuba.ac.jp/projects/completion/data/completion_sig2017.pdf

1.概述

 基于GAN的图像补全实战,对抗生成网络与动作识别、强化学习,生成对抗网络,人工智能,神经网络

        图像补全,即补全图像中的覆盖和缺失部分, 网络整体结构如下图所示,整体网络结构还是采取GAN,对于生成器,网络结构采取Unet的形式,首先使用卷积进行特征提取,同时下采样,然后使用反卷积得到生成结果。 

基于GAN的图像补全实战,对抗生成网络与动作识别、强化学习,生成对抗网络,人工智能,神经网络

        在生成器中,使用到了空洞卷积,空洞卷积主要是为了增大卷积的感受野(如右图所示),它通过在标准的卷积核中插入“空洞”(即间隔),以增加卷积核的感受野,具体来说,空洞卷积引入了一个“膨胀率”(dilation rate)的参数,用于控制卷积核中元素之间的间文章来源地址https://www.toymoban.com/news/detail-854582.html

到了这里,关于基于GAN的图像补全实战的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 对抗生成网络GAN系列——DCGAN简介及人脸图像生成案例

    🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题 🍊往期回顾:对抗生成网络GAN系列——GAN原理及手写数字生成小案例 🍊近期目标:写好专栏的每一篇文章 🍊支持小苏:点赞👍🏼、收藏⭐、留言📩 本节已录制视频:DCGAN简介及人脸图像生成案例🧨🧨🧨 ​  

    2024年01月16日
    浏览(41)
  • 【Pytorch深度学习实战】(10)生成对抗网络(GAN)

     🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​ 📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】 ​  🖍foreword ✔说

    2023年04月08日
    浏览(54)
  • 大数据机器学习GAN:生成对抗网络GAN全维度介绍与实战

    本文为生成对抗网络GAN的研究者和实践者提供全面、深入和实用的指导。通过本文的理论解释和实际操作指南,读者能够掌握GAN的核心概念,理解其工作原理,学会设计和训练自己的GAN模型,并能够对结果进行有效的分析和评估。 生成对抗网络(GAN)是深度学习的一种创新架

    2024年02月03日
    浏览(40)
  • PyTorch深度学习实战(31)——生成对抗网络(Generative Adversarial Network, GAN)

    生成对抗网络 ( Generative Adversarial Networks , GAN ) 是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生成中应用

    2024年01月22日
    浏览(49)
  • 【CVPR 2023的AIGC应用汇总(4)】图像恢复,基于GAN生成对抗/diffusion扩散模型方法...

    【CVPR 2023的AIGC应用汇总(1)】图像转换/翻译,基于GAN生成对抗/diffusion扩散模型方法 【CVPR 2023的AIGC应用汇总(2)】可控文生图,基于diffusion扩散模型/GAN生成对抗方法 【CVPR 2023的AIGC应用汇总(3)】GAN改进/可控生成的方法10篇 本文研究JPEG图像恢复问题,即加密比特流中的比特错误。

    2024年02月06日
    浏览(90)
  • Python用GAN生成对抗性神经网络判别模型拟合多维数组、分类识别手写数字图像可视化...

    生成对抗网络(GAN)是一种神经网络,可以生成类似于人类产生的材料,如图像、音乐、语音或文本 ( 点击文末“阅读原文”获取完整 代码数据 )。 相关视频 最近我们被客户要求撰写关于GAN生成对抗性神经网络的研究报告,包括一些图形和统计输出。 近年来,GAN一直是研

    2024年02月09日
    浏览(53)
  • 【计算机视觉|生成对抗】生成对抗网络(GAN)

    本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题: Generative Adversarial Nets 链接:Generative Adversarial Nets (nips.cc) 我们提出了一个通过**对抗(adversarial)**过程估计生成模型的新框架,在其中我们同时训练两个模型: 一个生成模型G,捕获数据分布 一个判别模型

    2024年02月12日
    浏览(60)
  • 【人工智能图像补全复现】基于GAN的图像补全

    本文解析和实现论文Globally and Locally Consistent Image Completion中的相关方法。论文亮点在于使用全局(整张图片)和局部(缺失补全部分)两种鉴别器来训练,并运用GAN使生成图像在各个尺度的特征与真实图像匹配。 :GAN;图像补全;多种鉴别器训练 文章来源:SIGGRAPH 2

    2024年04月24日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包