一、本文介绍
本文给大家带来的改进机制是利用图像分割网络UNetV2的主干来改进我们的YOLOv8分割模型(本文的内容虽然YOLOv8所有的功能的用户都能使用,但是还是建议分割的用户使用),U-Net v2 旨在改进医学图像分割的性能,通过引入一种新的、更为高效的跳跃连接设计来实现。这个版本的U-Net专注于更好地融合来自不同层级的特征——既包括从高级特征中提取的语义信息,也包括从低级特征中提取的细节信息。通过这种方式,U-Net v2能够在低级特征中注入丰富的语义信息,并同时精细化高级特征,从而实现对医学图像中对象边界的精确勾画和小结构的有效提取。
欢迎大家订阅我的专栏一起学习YOLO!
文章来源:https://www.toymoban.com/news/detail-854605.html
专栏目录:文章来源地址https://www.toymoban.com/news/detail-854605.html
到了这里,关于YOLOv8改进 | 主干篇 | 利用图像分割网络UNetV2改善图像分割检测性能(全网独家首发)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!